Table 1 Suppl. Glycosyltransferases involved in flavonoid biosynthesis in Arabidopsis thaliana and horticultural plants. UGT - uridine
diphosphate glucuronic acid transferase, UDP-Rha - uridine diphosphate-rhamnoside, 3-O-Rha - 3-O-rhamnoside, UDP-Glu - uridine
diphosphate glucose, UDP-Ara - UDP-arabinose, UDP-Rha - UDP-rhamnoside, 3-O-Rha-7-O-Glu - 3-O-rhamnoside-7-O-glucose, 3-
0-Glu-(1—-2)-Glu - 3-0O-glucose-(1—2)-glucose, 3-O-Glu - 3-O-glucose, Gal - galactose, Xal - xylose, Rut - rutinoside, Di-C-Glu -
dihydrochalcone-C-glucose.

Species UGT Acession No. Acceptor substrate Donor substrate Product Reference
Arabidopsis  UGT78D1 AT1G30530 kaempferol, quercetin, UDP-Rha 3-O-Rha Jones et al. 2003
thaliana isorhamnetin
UGT78D2 AT5G17050 kaempferol, quercetin, UDP-Glu 3-O-Glu Kim et al. 2012
isorhamnetin
UGT78D3 AT5G17030 quercetin UDP-Ara 3-O-Ara Yonekura-Sakakibara
et al. 2008
UGT73C6 AT2G36790 kaempferol 3-O-Rha, UDP-Glu 3-0O-Rha-7-O-Glu Jones et al. 2003
quercetin 3-O-Rha
UGT79B2 AT4G27560 cyanidin, cyanidin 3-O-Glu, UDP-Rha 3-O-Rha Lietal 2017
quercetin, kaempferol
UGT79B3 AT4G27570 cyanidin, cyanidin 3-O-Glu, UDP-Rha 3-O-Rha
quercetin, kaempferol
UGT79B6 AT5G54010 kaempferol 3-O-Glu, quercetinUDP-Glu 3-O-Glu-(1—2)-Glu  Yonekura-Sakakibara
3-0-Glu etal 2014
UGTS89C1 AT1G06000 flavonol 3-O-glycosides UDP-Rha 7-O-Rha Yonekura-Sakakibara
etal. 2007
UGT73Bl1 AT4G34138 flavonoid UDP-Glu 7-O0-Glu Kim et al. 2006
AtF5GT AT4G14090 flavonoid UDP-Glu 5-0-Glu, 3-0-Glu Tohge et al. 2005
Petunia 3GalT AADS55985 kaempferol, quercetin UDP-Gal 3-0-Gal Miller et al. 1999
hybrida PH1 AB027455 delphinidin 3-(p-Coumaroyl)- UDP-Glu delphinidin 3-(p- Yamazaki et al. 2002
Rut coumaroyl)- Rut-5-O-
Glu
PGTS8 AB027454 flavonol, anthocyanidin UDP-Glu 3-0-Glu, Knoch et al. 2018
anthocyanidin 3-O-Glu
F3GT BBE29003 kaempferol 3-O-Gal/Glu UDP-Glu kaempferol 3-O-Glu-
(1-2)-G
gal/Glu
PhF3GT BAAgZ9008 anthocyanin UDP-Glu 3-O-Glu Nakajima et al. 2001
PhA5GT BAA89009 anthocyanin UDP-Glu 5-O0-Glu
PhA3GRT CAA50376 anthocyanidin UDP-Rha 3-O-Glu Kroon et al. 1994
Camellia UGT72AM1 KY399734 flavonol, naringenin UDP-Glu 3-0-Glu, 4'-O-Glu, Cuietal 2016
sinensis 7-O-Glu
UGT75L12 ALO19892 naringenin, apigenin, UDP-Glu 7-0-Glu Dai et al. 2017

genistein, kaempferol



UGT78A14
UGT78A15
Fragaria x FaGT1
ananassa
FaGT6
FaGT7
Actinidia F3GT1
chinensis F3GGT1
AcUFGT3a
Vitis vinifera ~ VvGTS5
VvGT6
VvGT1

Prunus persica PpUGT78A1

PpUGT78A2

Citrus maxima 1,2-RhaT

CmF7GI12RT

Citrus sinensis 1,6-RhaT

CsUGT76F1

Citrus paradisi Cp3GT

Citrus unshiu ~ CuCGT

Fortunella FcCGT

crassifolia
Rosa hybrida  RhGT1
RhAS53GT

Diospyros kaki DKFGT

Ginkgo biloba UGT716A1

KP682360

KP682361

AY 663784

DQ289587

DQ289588

GU079683

FG404013

AYJ72756

AB499074

AB499075

AABS81682

ONI27510

XP_007224129

AY 048882

AAL06646

DQ119035

KDO69246
ACS15351

LC131334

LC131333

AB201048

BAD99560
BAI40148
KX371617

quercetin, kaempferol,
myricetin
quercetin, kaempferol,
myricetin

flavonol, anthocyanidin

kaempferol, quercetin,
isorhamnetin
kaempferol, quercetin,
isorhamnetin

cyanidin

cyanidin 3-O-Gal
cyanidin

kaempferol, quercetin,
isorhamnetin
kaempferol, quercetin,
isorhamnetin
flavonoid

cyanidin

cyanidin

flavanone 7-O-Glu

flavonoid-7-O-glycoside

flavanone 7-O-Glu

quercetin, kaempferol
quercetin, kaempferol,
myricetin
2-hydroxyflavanones,
dihydrochalcone, mono-C-
glucosides
2-hydroxyflavanones,
dihydrochalcone, mono-C-
glucosides

cyanidin, cyanidin 5-O-Glu

anthocyanidin

anthocyanidin, flavonol

UDP-Glu

UDP-Gal

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Gal

UDP-Xyl

UDP-Gal

UDP-Glu A

UDP-Glu, UDP-Gal

UDP-Glu

UDP-Gal

UDP-Glu

UDP-Rha

UDP-Rha

UDP-Rha

UDP-Rha
UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu
UDP-Gal

flavonol, flavanone, flavone UDP-Glu

3-O-Glu

3-0-Gal

3-O-Glu

3-0-Glu, 7-0-Glu, 4'-

O-Glu, diglucoside

Zhao et al. 2017

Lunkenbein et al.
2006

Griesser et al. 2008a,b

3-0-Glu, 7-0-Glu

cyanidin 3-O-Gal
cyanidin 3-O-Xyl-Gal
cyanidin 3-O-Gal
3-0-Glu A

3-0-Glu, 3-0-Gal

3-O-Glu
cyanidin 3-O-Gal

cyanidin 3-O-Glu
flavanone 7-O-Rha-
(1-2)- Glu
flavonoid-7-O-
glycoside 1,2-O-
rhamnosyltranside
flavanone 7-O- Rha-
(1-6)-Glu
7-O-Rha

3-0-Glu

Di-C-Glu

Di-C-Glu

cyanidin 5-O-Glu,
cyanidin 3,5-O-Glu
5,3-0-Glu

3-Gal

Montefiori et al. 2011
Crowhurst et al. 2008
Liuetal 2018a

Ono et al. 2010a

Ford et al. 1998
International Peach
Genome Initiative et
al. 2013

Cheng et al. 2014

Frydman et al. 2004

Frydman et al. 2013

Liu et al. 2018b

Devaiah et al. 2016

Ito et al. 2017

Ogata et al. 2005

Tkegami et al. 2009

3-0-Glu,4'-O-Glu,7-O- Su et al. 2017

Glu



Oryza sativa L.

Zea mays L.

Glycine max

(Linn.) Merr.

Solanum

lycopersicum

Antirrhinum

majus

OsFCGT

OsUGT706D1

OsUGT706C2

OsUGT706C3
OsUGTS88C3

OsUGT707A2

OsUGT706B1
OsUGT707A3
ZmFd3GT
(bronzel)
ZmUGT91L1

ZmUGT708A6

ZmUGT706D1
ZmUGT707A3
ZmUGT706C1
GmFd3GlcT

ABC94602

LOC_0s01g53460

LOC_0s03g62480

LOC_0s05g45100
0s01g53370

LOC_0s07g32060

LOC_0s01g53420
LOC_0s07g32020
GRMZM2g165390

GRMZM2g180283

GRMZM2g162783

BAB68093
BACS83989
BAB68090

Glyma07g30180

GmF3Glc6ppRha Glymal0g33790

T

GmF3Glc/Gal2pp Glyma06g43880

GlcT

PvIFR1

GmIF7GT
SIFdAT1

SIFd3GT

AmC4GT

Phvul002G033300
AB292164

Solyc12g088170

Solyc10g083440
AB198665

chrysin, apigenin, luteolin UDP-Glu
apigenin,l Luteolin, chrysoeriol, UDP-Glu
eriodictyol, kaempferol, tricin,
naringenin

apigenin, luteolin, chrysoeriol, UDP-Glu

eriodictyol, kaempferol, tricin,

naringenin
luteolin UDP-Glu
flavonol UDP-Glu

apigenin, luteolin, kaempferol, UDP-Glu

quercetin

kaempferol UDP-Glu
kaempferol UDP-Glu
anthocyanidin, flavonol UDP-Glu
isoorientin UDP-Rha
naringenin, eriodictyol, luteolin,UDP-Glu

2-hydroxyflavanones Zhou et al. 2006

7-O0-Glu Zhang et al. 2020
7-0-Glu

7-0-Glu

7-O-Glu Peng et al. 2017
5-0O-Glu

3-0-Glu Ralston et al. 1988
3-O-Rha Casas et al. 2016

naringenin O- Falcone Ferreyra et al.
hexosides, eriodictyol 2013
O-hexoside, naringenin
di-O,0-hexosides, 6-C-
glucosyl luteolin
(isoorientin), 6-C-

glucosyl apigenin
(isovitexin), 6-C-

glucosyl luteolin O-

rhamnoside (maysin)

apigenin

isoflavonoids UDP-Glu
flavonoid UDP-Glu
flavonoid UDP-Glu
cyanidin, kaempferol UDP-Glu
kaempferol 3-O-glucoside UDP-Rha
kaempferol 3-O-glucoside UDP-Rha
flavonoid, isoflavone UDP-Glu
isoflavone UDP-Glu
cyanidin-3-rutinoside, UDP-Glu
delphinidin-3-rutinoside,
quercetin-3-rutinoside,
kaempferol-3-rutinoside

flavonoid, cyanidin UDP-Glu
chalcone UDP-Glu

3-0-Glu Ko et al. 2008
3-0-Glu

7-0-Glu

3-O-Glu Kovinich et al. 2010

kaempferol 3-O-
rutinoside

kaempferol 3-O-

Rojas Rodas et al.
2014

Di et al. 2015

sophoroside

3-0-Glu Meschini et al. 2008;
7-O-Glu Noguchi et al. 2007
5-0-Glu Tohge et al. 2015
3-O-Glu

4'-O-Glu Ono et al. 2006



Bellis perennis

Cleretum
bellidiforme
Forsythia
intermedia
Glycyrrhiza
echinata
Gentiana
triflora
Hordeum
vulgare
subsp. vulgare
Ipomoea
purpurea
Linaria
vulgaris
Perilla
frutescens
Scutellaria
baicalensis
Rauvolfia
serpentina
Torenia hybrid
cultivar
Glandularia

hybrida

BpUGAT

DbB5GT

DbB6GT

FiF3GT

GelF7GT

GtF3GT

HvF3GT

IpA3G2GT

LvC4GT

PfF3GT

PfASGT

SbB7GAT

SbF7GT

RsAS

ThA5GT

VhAS5GT

AB190262

CAB56231

AAL57240

AAD21086

BAC78438

BAA12737

CAA33729

BAD95882

BAE48240

BAA19659

BAA36421

BAC98300

BAAS83484

CAC35167

BAC54093

BAA36423

anthocyanidin-3-O-glucoside

betanidin

betanidin

flavonoid

isoflavonoid

flavonoid

flavonoid

anthocyanidin

chalcone

flavonoid

anthocyanin

baicalein

flavonoid

hydroquinone

anthocyanin

anthocyanin

UDP-glucuronic acid

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

UDP-Glu

anthocyanidin-3-O-
glucoside 2-O-
glucuronoside
5-0-Glu

6-O-Glu

3-O-Glu

7-O0-Glu

3-O-Glu

3-O-Glu

3-O-Glu

4-0-Glu

3-O-Glu

5-O0-Glu

7-O0-Glu

7-O0-Glu

3-O-Glu

5-O0-Glu

5-O0-Glu

Sawada et al. 2005

Vogt et al. 1999

Carmona et al. 2021

Nagashima et al. 2004

Tanaka et al. 1996

Wise et al. 1990

Morita et al. 2005

Ono et al. 2006

Gong et al. 1997

Yamazaki et al. 1999

Labate et al. 2010

Hirotani et al. 2000

Arend et al. 2000

Yamazaki et al. 2002

Yamazaki et al. 1999




Table 2 Suppl. Flavonoids participate in various pharmacological effects. SOD - superoxide dismutase, CAT - catalase, ROS -

reactive oxygen species, GSH - glutathione, FMD - fasting mimicking diet, STZ - streptozotocin, PPARy - peroxisome proliferator-

activated receptor y, PDE - phosphodiesterase.

Name Structure Molecular mass  Functions References
(g/mol)

Curcumin C,1H00¢6 368.39 antitumor liver cancer, rectal cancer, breast cancer, Giordano et al. 2019
pancreatic cancer, efc.

Baicalein C15H100s5 270.24 liver cancer, breast cancer, stomach Liu et al. 2016
cancet, efc.

Galangin C15H100s5 270.24 liver cancer, breast cancer, stomach Fang et al. 2019
cancet, efc.

Lcariin C33H40015 676.67 prostate cancer, lung cancer Kashyap et al. 2018

Quercetin Ci5H1007 302.24 liver cancer, stomach cancer, leukemia,  Vinayak et al. 2019
lung cancer, kidney cancer, etc.

Luteolin C15H1006 286.24 lung cancer, osteosarcoma, papillary Imran et al. 2019
thyroid carcinoma, tongue squamous cell
carcinoma, efc.

Apigenin C15H100s5 270.24 liver cancer, lung cancer Ahmed et al. 2021

Genistein Cy5H;00s5 270.24 gastric cancer, cervical cancer, breast Tuli et al. 2019
cancer, ovarian cancer, esophageal cancer,
etc.

Polyphenol theaflavin C9H24012 564.49 anti-oxidation increased SOD, CAT and other Subramanian et al.
antioxidants, etc. 1999

Catechin C15sH1406 290.27 decreased ROS and lipid peroxidation, ~ Bernatoniene et al.
increased antioxidants, efc. 2018

Quercetin Ci5H;100 302.24 increased SOD, CAT and other Boots et al. 2008
antioxidants, efc.

Proanthocyanidin C30H6013 594.52 reduction expression of the enzyme nitric Zhang et al. 2019b
oxide synthase, increased antioxidants,
etc.

Anthocyanin CisH110¢ 287.24 increased GSH, increased the capacity of Zhang ez al. 2021b
antioxidant, efc.

Kaempferol C15H100¢ 286.24 increased antioxidants, efc. Zheng et al. 2019

Panduratin A Cy6H3004 406.51 antibacterial Staphylococcus aureus, etc. Cushnie and Lamb

2011

Isobavachalcone Cy0H2004 324.37 Staphylococcus aureus, Bacillus cereus, Kuete et al. 2012
Escherichia coli, Klebsiella pneumoniae,
Pseudomonas aeruginosa, Salmonella
typhi, etc.

Kaempferol C15H1006 286.24 methicillin-resistant Staphylococcus Kumar et al. 2019

aureus, grammycin-resistant

Enterococcus, etc.



Isolupalbigenin C,5Hp60s5 406.48 methicillin-resistant Staphylococcus Quesada et al. 2012
aureus

Flavone Ci5H100, 222.24 Staphylococcus aureus, Enterococcus Zhang et al. 2019a
faecalis, Salmonella typhi, Enterobacter

cloacae, Enterobacter aerogenes, etc.

Licochalcone A Cy1Hp04 338.40 Staphylococcus aureus Wang et al. 2020
Chrysin Ci5H;004 254.24 hypoglycemic protection of STZ-induced diabetic Premalatha et al.
nephropathy in rats, efc. 2013
Quercetin Ci5H1007 302.24 regulate blood sugar in many ways, Fang et al. 2008
Kaempferol Cy5H1006 286.24 including as PPARY receptor co-agonists,
etc.
Naringenin Cy5H1,05 272.25 protection of the pancreatic tissue of Annadurai et al. 2012

diabetic rats, efc.

Chlorogenic acid C16Hi1309 354.31 activated protein kinase improves glucose Ong et al. 2013
and lipid metabolism, efc.

Luteolin C15H1006 286.24 lower blood sugar through arachidonic ~ Song ef al. 2020
acid metabolism pathway, etc.

Epicatechin C15H1406 290.27 Lower blood sugar by inhibiting intestinal Lee ez al. 2020
transport of glucose, efc.

Gallic acid C7H4Os 170.12 Reduce blood glucose levels through Variya et al. 2020
PPAR-y and Akt signaling pathways, efc.

Quercetin Ci5H1007 302.24 vasodilation improved biomarkers of endothelial Dower et al. 2015

function, etc.

Isoflavones Ci5H100, 222.24 imroved FMD, etc. Beavers et al. 2012

Flavone Ci5H100, 222.24 lowered risk of cardiovascular diseases, Wang et al. 2014
etc.

Anthocyanin CisH110¢ 287.24 prevention of hypertension, etc. Cassidy et al. 2011

Naringenin C;5H1,0s5 272.25 inhibition of PDESs in smooth muscle Orallo et al. 2005
cells, etc.

Delphinidin CisHy107 303.30 Release of NO from endothelial cells Ma et al. 2012

through the activation of Ca* channels in

endothelial cells, etc.

Quercetin Ci5H;007 302.24 damage protection anti-cardiomyocyte apoptosis, efc. Hertog et al. 1993
Kaempferol C15H100¢ 286.24

Myricetin C15H;00g 318.24 anti-atherosclerosis, anti-platelet activity, Griffiths et al. 2016
Apigenin C15H100s5 270.24 etc.

Luteolin Ci5H906 286.24

Pentamethylquercetin Cy0H2007 372.24 anti-atherosclerosis, efc. Du et al. 2019
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