

Putrescine priming effects on chlorophyll fluorescence, antioxidant enzyme activity, and primary metabolite accumulation in maize seedlings under water deficit

C.C. TOLEDO¹ , A.C.C. DA SILVA¹ , M.C. DEL PELOSO¹, M.A. LEITE¹, L.A.A. BRESSANIN² , G. ESTEVES² , P.C. MAGALHÃES³, T.C. DE SOUZA² , and P.R. DOS SANTOS-FILHO^{1,*}

¹ Federal University of Alfenas – UNIFAL-MG, Biochemistry Department, Alfenas, MG, 37130-001, Brazil

² Federal University of Alfenas – UNIFAL-MG, Institute of Natural Sciences, Alfenas, MG, 37130-001, Brazil

³ Maize and Sorghum National Research Center, Sete Lagoas, MG, 35701-970, Brazil

*Corresponding author: E-mail: pliniosant@hotmail.com

Abstract

This study aimed to evaluate the effect of putrescine priming on the initial growth, chlorophyll fluorescence, primary metabolites accumulation, and antioxidant enzyme activities in two maize hybrids with contrasting drought tolerances. Seeds of *Zea mays* L. hybrids DKB 390 (drought tolerant) and BRS 1030 (drought sensitive) were primed with putrescine (10 or 100 μ M). Paper rolls moistened with distilled water or mannitol (-0.6 MPa) were maintained at 30°C for 7 d. The growth parameters were higher in the DKB hybrid than in the BRS hybrid. Putrescine priming (10 μ M) promoted the root growth of BRS at levels similar to those of DKB and improved photochemical and non-photochemical quenching and maximum quantum efficiency of BRS seedlings. Higher levels of reducing sugars were found in DKB seedlings when compared to BRS in both roots and leaves, especially with 100 μ M putrescine. Total soluble sugar and starch were lower in the maize roots under water deficit and with 10 μ M putrescine for both hybrids. BRS seedlings showed higher starch content in the leaves in the control and 10 μ M putrescine treatments. Superoxide dismutase was activated in BRS plants by the priming, especially in the roots, but this effect was not observed for catalase, ascorbate, or guaiacol peroxidase, although the DKB seedlings presented much higher guaiacol peroxidase activity than BRS seedlings in both the roots and shoots. In conclusion, putrescine priming (10 M) improved the morphological and biochemical responses of the drought sensitive maize hybrid BRS.

Keywords: antioxidant enzymes, chlorophyll fluorescence, photochemical quenching, polyamines, sugars.

Introduction

Plants can be exposed to various environmental stresses that affect their growth and development. Water deficit resulting from drought is the abiotic stress that most

reduces crop productivity (Islam *et al.* 2022a). These adverse conditions affect cereals, such as maize, from germination and seedling performance to grain filling, thereby negatively affecting agricultural sustainability. In addition, during sowing, water scarcity causes non-

Received 23 May 2023, last revision 23 October 2023, accepted 26 October 2023.

Abbreviations: ABA - abscisic acid; APX - ascorbate peroxidase; BOD - biochemical oxygen demand chamber; CAT - catalase; DNS - 3,5-dinitrosalicylic acid; EDTA - ethylenediaminetetraacetic acid; F_0' - light-adapted fluorescence; F_m - maximum fluorescence; F_m' - maximum fluorescence emitted by the leaves; F_s - constant fluorescence; GPX - guaiacol peroxidase; H_2O_2 - hydrogen peroxide; MCW - methanol:chloroform:water solution; NBT - nitroblue tetrazolium; NPQ - non-photochemical quenching; PMSF - phenylmethylsulfonyl fluoride; PS II - photosystem II; PUT - putrescine; PVP - polyvinylpyrrolidone; q_p - photochemical quenching; SOD - superoxide dismutase; YII - effective photochemical quantum yield of PS II; ϵ - molar absorption coefficient.

Acknowledgements: The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the scholarships; as well as Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for financial support (APQ-01671-17).

Conflict of interest: The authors declare that they have no conflict of interest.

uniform germination, compromising the final stand of the area and generating losses and economic damage to farmers.

Plant responses to water stress are diverse and interconnected. Several reports have indicated reduced growth and changes in photosynthetic processes due to the loss of photochemical efficiency and damage to photosystem II (Xin *et al.* 2018, Zhang *et al.* 2018, AbdElgawad *et al.* 2020). These deleterious effects in the oxygen-evolving complex and reaction center of photosystem II lead to the accumulation of reactive oxygen species (ROS), which can cause photoinhibition and degradation of macromolecules, resulting in plant damage and decreased production (Huang *et al.* 2019). These molecules have a wide range of effects on plants that can be detrimental depending on their concentrations.

Seed priming is a controlled hydration technique that introduces molecules that initiate metabolic processes in germinating seeds, thus reconciling and standardizing the germination period, and providing an effective short-term treatment (Farooq *et al.* 2009, Voko *et al.* 2022). Studies conducted in the last decade indicate that priming is an efficient approach to stimulate cellular defense responses to biotic and abiotic stresses (Junges *et al.* 2013, Alcântara *et al.* 2015, Pallaoro *et al.* 2016).

In recent years, new methods that do not harm the environment are required to improve the performance of plants under adverse environmental conditions. Biostimulants are organic compounds and/or micro-organisms that can regulate plant growth behavior through molecular and physiological changes, modulations in metabolism and plant anatomy (Bhupenchandra *et al.* 2022, Meddich 2023). Sustainable biological practices, such as biostimulants that increase plant yield, quality, or tolerance to abiotic stresses should be explored to improve plant responses. The use of biostimulants has become a promising tool in the current climate change scenario. It is possible to use exogenous growth regulators, such as polyamines, as biostimulants in priming. Polyamines are small polycationic molecules essential for the growth and survival of all organisms. Putrescine (Put), spermidine, and spermine are the most abundant polyamines in plants. They are involved in various growth and developmental processes, including cell division stimulation, environmental stress responses, rhizogenesis regulation, embryogenesis, floral development, and senescence (Evans and Malmberg 1989, Kakkar and Sawhney 2002, Kusano *et al.* 2008). Put may play an essential role in plant growth and development by acting as a signaling molecule in cell proliferation and differentiation, or by regulating the auxin/cytokinin ratio (González-Hernández *et al.* 2022). Furthermore, Put can play a crucial role in rooting by increasing the quantity and quality of roots as described by Badawy *et al.* (2015).

Thus, great interest has arisen in application of Put in the form of priming, with the ultimate goal of making plants more tolerant to water deficit in the early stages of maize growth. In addition, Put priming is expected to significantly improve the growth of maize seedlings

through an increase in biomass and morphophysiological and biochemical responses.

Thus, we evaluated the effect of priming with Put on the seedling growth of two maize hybrids with contrasting drought tolerances. The purposes of this study were to: 1) investigate whether Put priming has a positive or negative effect on seed germination, seedling growth, and chlorophyll fluorescence under water stress in the two hybrids and 2) determine whether Put priming has an explicit impact on primary metabolite accumulation and antioxidant enzymes activity.

Materials and methods

Plants and germination assay: Two maize (*Zea mays* L.) hybrids with contrasting drought tolerance were obtained: DKB 390 (tolerant) from Dekalb® and BRS 1030 (sensitive) from the Embrapa Breeding Program, Sete Lagoas, Minas Gerais (Souza *et al.* 2013, 2016). The seeds were soaked at room temperature for 20 h in 10 or 100 μ M putrescine solutions for priming, and distilled water was used as a control. The experimental design was completely randomized, with five replications for each hybrid, total 125 seeds per treatment. Twenty hours was previously defined as the limit for priming, since after this period the seeds begin germinating. Subsequently, for the germination assay, 25 seeds were placed in rolls composed of three sheets of *Germitest*® paper moistened with distilled water or -0.6 MPa mannitol solution in a corresponding volume of 2.5 times the mass of the paper roll, according to the standardized methodology of Brazilian rules of seeds analyses (Brasil 2009). The paper rolls containing the seeds were placed in beakers closed with plastic bags to avoid water evaporation and kept in a bio-oxygen demand (BOD) chamber at a temperature of 30°C and a 12-h photoperiod with an irradiance of 50 μ mol m⁻² s⁻¹. Germination was monitored at 12-h intervals for 7 d and the seedlings were collected at the end of this period. Plant height, root length, and chlorophyll fluorescence were immediately measured and the seedlings were stored at -80°C for further analyses. For biometric and chlorophyll fluorescence analyses, 25 seedlings per treatment were used for each replicate. For the sugar content and antioxidant enzyme activity 10 seedlings were used for each replication.

Chlorophyll fluorescence: A *Mini-PAM* modulated fluorimeter (Heinz Walz, Effeltrich, Germany) was used to measure chlorophyll fluorescence parameters. The leaves were kept in the dark for 30 min, after which minimum fluorescence (F_0) was measured at a sufficiently low irradiance to avoid photochemical reactions. The maximum fluorescence (F_m) was determined using a saturating light pulse of 7 000 mol(photon) m⁻² s⁻¹ for 0.8 s. The leaves were then treated with actinic light at 1 500 μ mol(photon) m⁻² s⁻¹. Subsequently, constant fluorescence (F_s) was determined, and another pulse of saturating light was applied for 1 s to obtain the maximum fluorescence emitted by the leaves (F_m'). The actinic light was

removed, and the leaves were irradiated with distant red light to obtain light-adapted F_0 (F_0'). The maximum photosystem II (PS II) efficiency was estimated using the F_v/F_m ratio. Photochemical quenching was calculated as $q_p = (F_m' - F_s)/(F_m' - F_0')$, and non-photochemical quenching was calculated as $NPQ = (F_m - F_m')/F_m'$. The effective photochemical quantum yield of PS II was also evaluated as $YII = F_m' - F_s/F_m' = \Delta F/F_m'$ (van Kooten and Snel 1990).

Extraction and analysis of sugars and starch: Shoot and root samples (200 mg) were ground in 2 mL of methanol:chloroform:water (MCW, 12:5:3 v:v:v) solution and incubated at room temperature for 24 h. Subsequently, the samples were centrifuged for 30 min at $1\ 500 \times g$, and the supernatant was mixed with chloroform and water (4:1:1.5 v:v:v). The aqueous phase was collected after 24 h and used for the sugar analysis. Starch was extracted from the pellet after centrifugation by incubation with 30% perchloric acid and analyzed with the anthrone reagent, as described below.

Total soluble sugars and starch were determined colorimetrically after reaction with anthrone (Yemm and Willis 1954). Briefly, the samples were mixed with water to a final volume of 1 mL and then mixed with 2 mL of anthrone reagent (20 mg anthrone, 500 μ L water, and 10 mL concentrated H_2SO_4). The samples were shaken and incubated at 100°C for 5 min. The absorbance was determined at 620 nm and quantified using a glucose standard curve.

Reducing sugar content was determined using 3,5-dinitrosalicylic acid (DNS). The samples were mixed with water (final volume of 1.1 mL) and 1 mL of the DNS reagent. The mixture was shaken and incubated at 100°C for 5 min. Absorbance was determined at 540 nm and quantified using a glucose standard curve (Miller 1959).

Antioxidant enzyme activity determinations: Shoots and root samples (300 mg) were homogenized in four volumes of 50 mM phosphate buffer (pH 7.5) containing 1 mM ethylenediaminetetraacetic acid (EDTA), 1 mM phenylmethylsulfonyl fluoride (PMSF), and 5% polyvinylpyrrolidone (PVP). The homogenate was centrifuged at $1\ 200 \times g$ for 30 min and the supernatant was used to determine the enzymatic activity. Protein content was determined using the Bradford method (Bradford 1976) using bovine serum albumin as the standard and enzymatic activity was determined according to García-Limones *et al.* (2002).

Superoxide dismutase (SOD) activity was determined using the inhibition of the photochemical reduction of nitroblue tetrazolium (NBT). The reaction mixture was formed by 50 mM phosphate buffer (pH 7.8), 0.1 mM EDTA, 13 mM methionine, 75 μ M NBT, 2 M riboflavin, and different volumes of the enzyme extract. The reaction was initiated by adding riboflavin and the absorbance at 560 nm was measured after 12 min of incubation at room temperature under continuous light.

Guaiacol peroxidase (GPX) activity was determined using the increase in absorbance at 470 nm caused by the oxidation of guaiacol ($\epsilon = 26.6\ mM^{-1}\ cm^{-1}$). The reaction

mixture consisted of 100 mM phosphate buffer (pH 6.5), 15 mM guaiacol, 0.05% (v/v) H_2O_2 , and the enzyme extract.

Catalase activity (CAT) was determined by measuring the decrease in absorbance at 240 nm. The reaction mixture contained 50 mM phosphate buffer (pH 7.0), 20 mM H_2O_2 , and different volumes of enzyme extract. The reaction was initiated by the addition of H_2O_2 ($\epsilon = 36\ mM^{-1}\ cm^{-1}$).

Ascorbate peroxidase (APX) activity was evaluated by the oxidation of ascorbate ($\epsilon = 2.8\ mM^{-1}\ cm^{-1}$) measured at 290 nm. The reaction mixture consisted of 50 mM phosphate buffer (pH 7.0), 0.25 mM sodium ascorbate, 5 mM H_2O_2 , and different volumes of the enzyme extract. The reaction was initiated by the addition of H_2O_2 .

Statistical analysis: The experimental design was completely randomized, with five replicates of 25 seeds per treatment. The data obtained were subjected to analysis of variance (ANOVA), and the means were compared using Tukey's test at 5% significance using *Sisvar* software, version 5.6 (Federal University of Lavras, Lavras, MG, Brazil).

Results and discussion

The growth parameters differed between the two hybrids (Fig. 1). Surprisingly, the fresh mass was higher in the drought-sensitive hybrid BRS 1030, but the root and shoot lengths were shorter than those of the drought-tolerant hybrid DKB. As pointed out by Kränlein *et al.* (2022) plants have different response mechanisms in relation to the decline of water in the soil and can be categorized as isohydric or anisohydric. Isohydric plants maintain water potential while anisohydric plants are characterized by large fluctuations in leaf water potential. It seems to be the case of BRS 1030 and DKB 390 respectively. However, the performance of plants with different water regulation modes depends on the intensity and duration of water deficit. However, germination percentage did not differ between the treatments. Additionally, only BRS was affected by the mannitol treatment in biomass and shoot and root length. Put priming at 10 μ M in the presence of mannitol at -0.6 MPa promoted root growth to be similar to that of DKB plants (Fig. 1C). Although -0.6 MPa does not cause excessive osmotic stress to DKB plants, this value of osmotic pressure was chosen based on previous experiments when BRS plants were extremely affected by higher values. Xin *et al.* (2018) reported a wide range of physiological and biochemical changes in maize seedling exposed to -0.8 MPa. In our case, the shoot length of BRS plants was negatively affected at -0.6 MPa, and the leaves withered excessively. However, in the presence of 10 μ M Put, the shoot length was recovered (Fig. 1D). Putrescine plays several roles, including scavenging of reactive oxygen species, osmotic balance adjusting, and increased cell division (Tyagi *et al.* 2023), which results in shoot growth. However, the difference in results between the concentrations may be related to several factors, such as the species under study, conditions of the experiments,

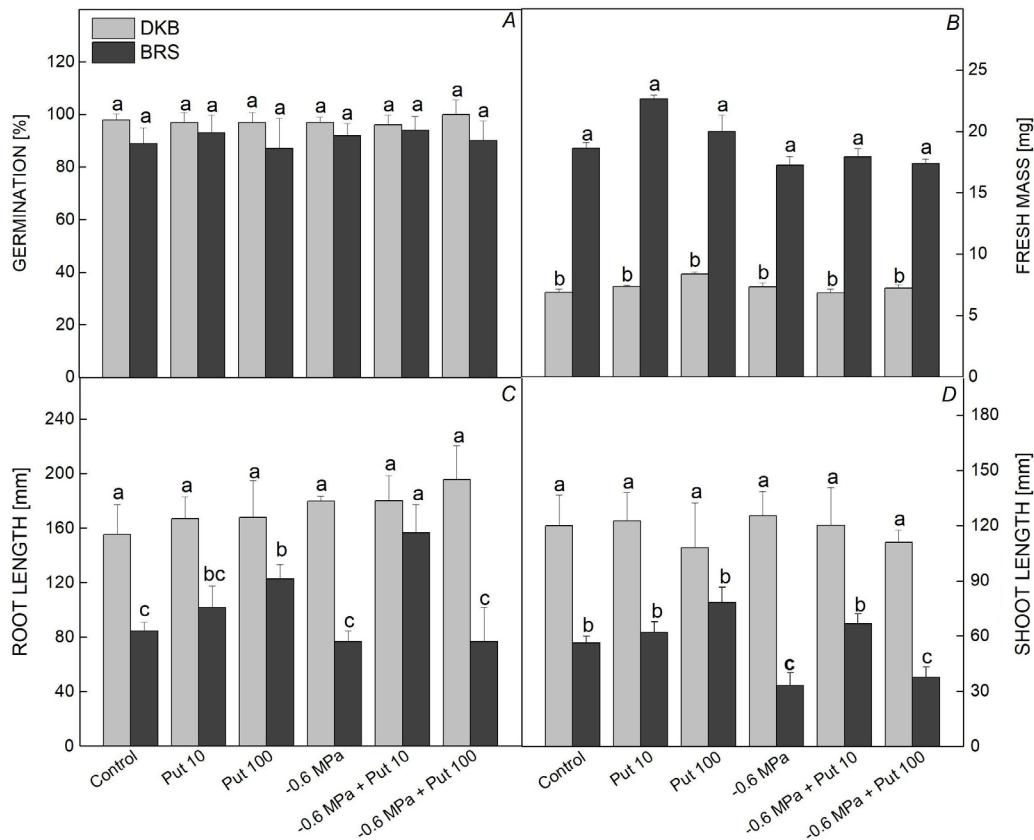


Fig. 1. Effect of water deficit and putrescine priming on growth parameters of maize hybrids with contrasting drought tolerances. Means \pm SDs, $n = 25$, different letters indicate statistical differences by the Tukey's test at 5% significance level.

intensity of the water deficit, among others. [Hussein et al. \(2023\)](#) found positive effects on the growth of wheat plants under water deficit with 1 mM Put. [Doneva et al. \(2021\)](#) also found better growth of the wheat shoots under water deficit after priming in 0.5 mM Put. These results show that putrescine can be effective over a wide range of concentrations. Furthermore, in the case of this work, it is observed that the concentration of 100 μ M was less effective than 10 μ M but did not cause deleterious effects.

Regarding chlorophyll fluorescence measurements, as expected, DKB plants were only slightly affected by treatments. In contrast, there was a considerable effect on BRS plants (Fig. 2). The effective photochemical quantum yield (YII) of DKB plants remained unchanged in all treatments, but the BRS plants showed a decrease in the presence of water deficit (-0.6 MPa). However, when primed with 10 μ M of putrescine, the YII of the BRS samples recovered (Fig. 2A). Similarly, photochemical (q_p) and non-photochemical (NPQ) quenching as well as the maximum quantum efficiency (F_v/F_m) of BRS were restored to the same levels as those of DKB when primed with putrescine at 10 μ M (Fig. 2B-D). During the light reaction, Put accumulates in the thylakoid lumen, acting as a permeable buffer and osmolyte and minimizing the possibility of chloroplast damage, chlorophyll degradation, and photoinhibition in plants under oxidative stress ([Islam et al. 2022a](#)). As reviewed by [Lopes et al. \(2011\)](#), many changes have been observed in

the photosynthetic apparatus of C₄ plants in response to drought stress. Many strategies have been used to ensure the proper functioning of the photosynthetic apparatus to maintain the water use efficiency of these plants. The NPQ of DKB plants increased when they were subjected to water deficit (Fig. 2B). To corroborate these results, polyamines have been demonstrated to increase the fluorescence quenching of isolated LHC II from green algae, while *in vivo*, spermine and spermidine induced NPQ in higher plants under low light conditions ([Ioannidis and Kotzabasis 2007](#), [Ioannidis et al. 2011](#)). NPQ is an important process used by plants to dissipate excess of absorbed light energy and protect the photosynthetic apparatus from damage caused by abiotic stresses ([Li et al. 2018](#)). These authors also verified that NPQ increased in both sensitive and tolerant maize plants when subjected to drought stress and that this effect was potentiated by spermidine in a concentration-dependent manner. In the present study, the NPQ of the BRS plants did not increase in the presence of drought stress without Put priming. Interestingly, photochemical quenching (q_p) in stressed BRS plants primed with 10 μ M Put was higher than that in DKB seedlings under the same conditions (Fig. 2C), which may be explained by the lower capacity of BRS to cope with damages caused by water deficit, as q_p is a non-regulated process ([van Amerongen and Chmeliov 2020](#)). In ginseng seedlings under salt stress, the action of Put improves chlorophyll fluorescence parameters,

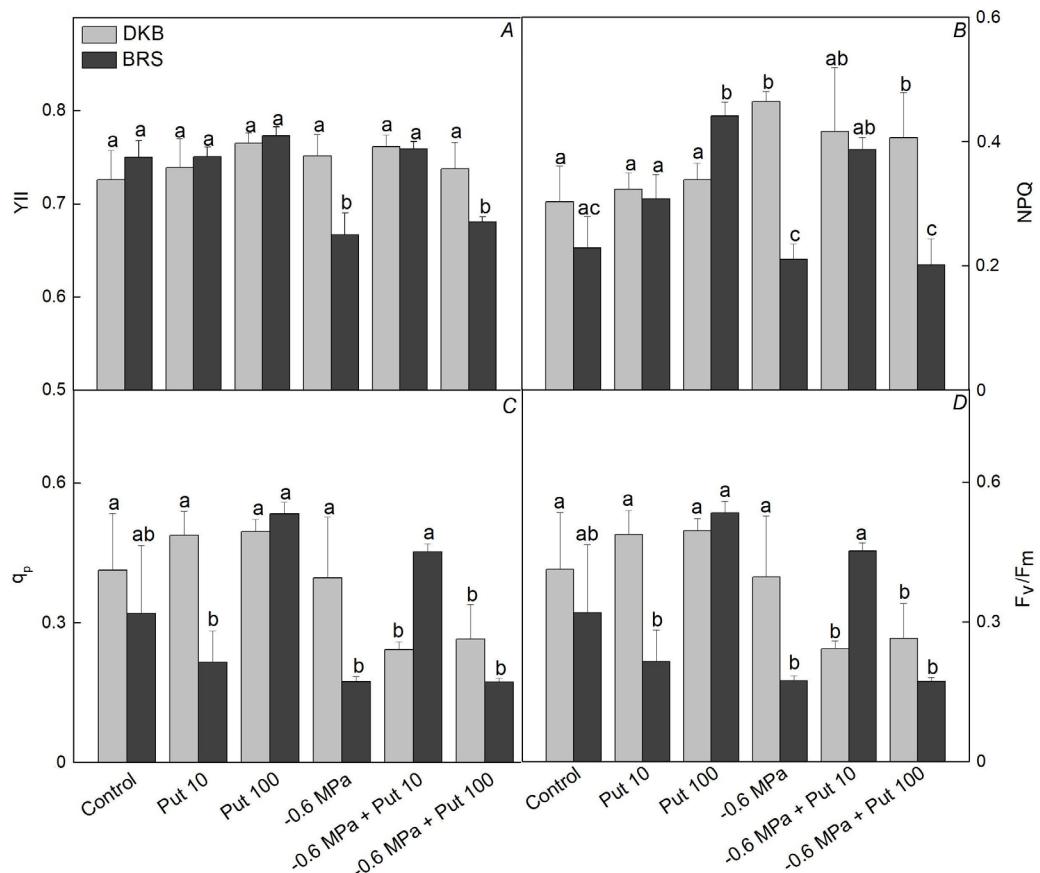


Fig. 2. Effect of water deficit and putrescine priming on the chlorophyll fluorescence parameters of maize hybrids with contrasting drought tolerances. YII - effective photochemical quantum yield of PS II; q_p - photochemical quenching; NPQ - non-photochemical quenching; F_v/F_m - variable to maximum fluorescence ratio (the maximal efficiency of PS II photochemistry). Means \pm SDs, $n = 25$, different letters indicate statistical differences according to Tukey's test at 5% significance level.

thus protecting the plants from stress-induced damage and restoring morphophysiological activities (Islam *et al.* 2021). However, the concentration of 100 μ M of Put did not change the fluorescence parameters for the BRS hybrid under deficit. Under these conditions, it was observed that the lower concentration of Put (10 μ M) was better and induced greater efficiency in the photosystems.

During germination, the mobilization of complex polymers from storage tissues, such as endosperm or cotyledons provides energy and building blocks for seedling growth (Sánchez-Linares *et al.* 2012). Post-germination events occur during the utilization and transport of these compounds. Fig. 3 illustrates some of these activities. Higher contents of reducing sugars were observed in DKB plants than in the BRS hybrids, both in the roots and leaves (Fig. 3A,B). The accumulation of organic osmolytes, such as soluble sugars, is a common response to drought stress (Prazeres and Coelho 2020). Therefore, this result is expected for drought-tolerant plants such as DKB. There was an increase in the content of reducing sugars in the roots of BRS plants in the presence of stress. However, this effect was not observed in the shoots. This result corresponds to the damage observed in the photosynthetic apparatus of the BRS plants. Although Put priming treatment recovered the chlorophyll fluorescence

parameters in the BRS samples, it did not result in the accumulation of reducing sugars. The contents of soluble sugars and starch were similar between the plants. In fact, BRS plants presented a higher content of starch in the shoots in the absence of stress and this content decreased with the treatments because of the mobilization to produce smaller osmotically active molecules. However, the content of reducing sugars remained low. Working with DKB 390, Queiroz and Cazetta (2016) found that trehalose content did not increase in response to different (-0.3, -0.6, -0.9, and -1.2 MPa) osmotic potentials. Those authors argued that this molecule was used more as an energy source than as an osmoprotectant. Li *et al.* (2017) observed a significant increase in total soluble sugar content in a stress-dependent manner. Similarly, Prazeres and Coelho (2020) reported increased content of soluble sugars in response to water deficit, which may be related to drought tolerance in high-vigor seeds. In the present study, there was no clear increase in sugar content owing to stress. However, the intrinsically high content of reducing sugars in DKB plants are highly suggestive of their importance in drought tolerance.

Sugar and starch content was similar between plants. In general, the BRS hybrid accumulated starch and soluble sugars at the same levels as DKB in the presence of stress.

Fig. 3. Effect of water deficit and putrescine priming on reducing sugars, soluble sugars, and starch contents in roots (A, C, and E) and shoots (B, D, and F) of maize hybrids with contrasting drought tolerances. Means \pm SDs, $n = 10$, different letters indicate statistical differences according to Tukey's test at 5% significance level.

Therefore, the main difference appeared to be related to the accumulation of reducing sugars. The greater amount of reducing sugars in DKB may be related to the ability to mobilize reserves since the starch content in this hybrid is lower than in BRS in the absence of stress (Fig. 3).

As indicated by several authors (Alcântara *et al.* 2015, Avramova *et al.* 2017, Namjoyan *et al.* 2020), redox status is closely linked to plant responses to abiotic stress. In general, water deficit causes an increase in oxidative stress, which leads to a response by the plant. Priming favored SOD activity in the roots of the two hybrids in the absence of stress (Fig. 4A). However, the BRS plants were more responsive. In the presence of stress, there was an increase in SOD activity only in BRS plants, whereas that in DKB plants was not significantly different. In

shoots, only Put priming in the absence of stress increased SOD activity. All other treatments did not significantly differ (Fig. 4B).

The GPX activity in the roots was much higher in DKB plants than in BRS plants, both in the absence and presence of stress (Fig. 4C). No clear patterns were observed in the roots or shoots for catalase or ascorbate peroxidase (Fig. 5). In general, DKB and BRS seedlings showed similar behavior, which could relate to the wide variation in the data. In the absence of stress, priming caused an increase in GPX activity in DKB plants. However, when subjected to water deficit, there was no increase in enzyme activity. In the case of BRS, there was no difference between treatments. According to Chugh *et al.* (2013), the activation of peroxidases may be a protective response

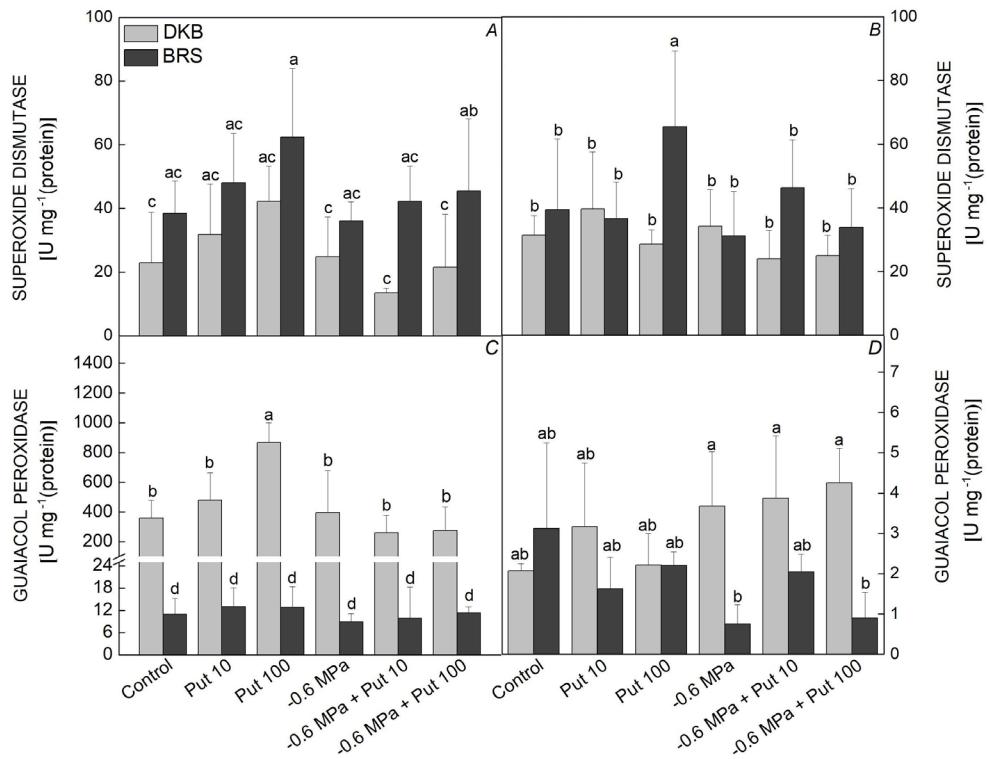


Fig. 4. Effect of water deficit and putrescine priming on superoxide dismutase and guaiacol peroxidase activities in the roots (A and C) and shoots (B and D) of maize hybrids with contrasting drought tolerances. Means \pm SDs, $n = 10$, different letters indicate statistical differences according to Tukey's test at a 5% significance level.



Fig. 5. Effect of water deficit and putrescine priming on ascorbate peroxidase and catalase activities in the roots (A and C) and shoots (B and D) of maize hybrids with contrasting drought tolerances. Means \pm SDs, $n = 10$, different letters indicate statistical differences according to Tukey's test at 5% significance level.

to overcome unfavorable environmental conditions including drought. Thus, the higher peroxidase activity of the DKB hybrids may contribute to increased tolerance. As previously demonstrated by [Avila et al. \(2016\)](#), DKB plants can invest in roots when subjected to drought. Based on our data, this anatomical response can be related, at least in part, to higher peroxidase activity since this class of enzymes is involved in several functions in the plant life cycle, such as cell wall metabolism, lignification, suberization, ROS metabolism, and wound healing among others ([Pandey et al. 2017](#)). The shoots showed less pronounced effects, but the DKB plants showed greater GPX activity under stress conditions, whereas 100 μ M Put priming resulted in partial recovery of GPX activity ([Fig. 4D](#)). Under water deficit conditions, exogenous application of Put increases drought tolerance, ROS scavenging, and protects cells through various morphophysiological and biochemical processes ([Islam et al. 2022b](#)).

Put had a protective effect only in the sensitive maize genotype (BRS). This result may be related to preventing protein denaturation, facilitating protein folding, activating the stress response, promoting defense reactions, inducing growth and development processes, and initiating the biosynthesis of secondary metabolite precursors ([Nandy et al. 2022](#)). In addition, under environmental stress, the mechanisms of Put are associated with the elimination of free radicals, regulation of abscisic acid (ABA) content, prevention of lipid peroxidation, maintenance of cellular pH and ionic balance, and regulation of cationic channels ([Gill and Tuteja 2010](#)). Thus, it is possible that there were multiple effects on BRS seedlings, with the action of Put as a growth regulator and the protective effect of priming, helping in the initial development of maize.

In conclusion, priming with 10 μ M Put has a protective effect on maize seedlings under water deficit. The drought-sensitive genotype (BRS) benefits from Put priming by promoting increased root and shoot growth, photosystem efficiency (YII), and guaiacol peroxidase activity. Put priming is a promising strategy for protecting the initial growth of maize seedlings under water deficit conditions.

References

AbdElgawad H., Avramova V., Baggerman G. et al.: Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. - *Plant Cell Environ.* **43**: 2254-2271, 2020.

Alcântara B.K., Machemer-Noonan K., Silva Júnior F.G., Azevedo R.A.: Dry priming of maize seeds reduces aluminum stress. - *PLoS ONE* **10**: e0145742, 2015.

Avila R., Magalhães P.C., De Alvarenga A.A. et al.: [Drought-tolerant maize genotypes invest in root system and maintain high harvest index during water stress.] - *Rev. Bras. Milho Sorgo* **15**: 450-460, 2016. [In Portuguese]

Avramova V., AbdElgawad H., Vasileva I. et al.: High antioxidant activity facilitates maintenance of cell division in leaves of drought tolerant maize hybrids. - *Front. Plant Sci.* **8**: 84, 2017.

Badawy E.M., Kandil M.M., Habib A.M., El-Sayed I.M.: Influence of diatomite, putrescine and alpha-tocopherol on some vegetative growth and flowering of *Antirrhinum majus* L. plants. - *J. Hortic. Sci. Ornam. Plants* **7**: 7-18, 2015.

Bhupenchandra I., Chongtham S.K., Devi E.L. et al.: Role of biostimulants in mitigating the effects of climate change on crop performance. - *Front. Plant Sci.* **13**: 967665, 2022.

Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - *Anal. Biochem.* **72**: 248-254, 1976.

Brasil: [Rules for Seed Analysis.] Ministry of Agriculture, Livestock and Supply. Pp. 399. Mapa/ACS, Brasília 2009. [In Portuguese]

Chugh V., Kaur N., Grewal M.S., Gupta A.K.: Differential antioxidative response of tolerant and sensitive maize (*Zea mays* L.) genotypes to drought stress at reproductive stage. - *Indian J. Biochem. Bio.* **50**: 150-158, 2013.

Doneva D., Pál M., Brankova L. et al.: The effects of putrescine pre-treatment on osmotic stress responses in drought-tolerant and drought-sensitive wheat seedlings. - *Physiol. Plantarum* **171**: 200-216, 2021.

Evans P.T., Malmberg R.L.: Do polyamines have roles in plant development? - *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **40**: 235-269, 1989.

Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management. - *Agron. Sustain. Dev.* **29**: 185-212, 2009.

García-Limones C., Hervás A., Navas-Cortés J.A. et al.: Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (*Cicer arietinum* L.) and *Fusarium oxysporum* f. sp. *ciceris*. - *Physiol. Mol. Plant P.* **61**: 325-337, 2002.

Gill S.S., Tuteja N.: Polyamines and abiotic stress tolerance in plants. - *Plant Signal. Behav.* **5**: 26-33, 2010.

González-Hernández A.I., Scalschi L., Vicedo B. et al.: Putrescine: a key metabolite involved in plant development, tolerance and resistance responses to stress. - *Int. J. Mol. Sci.* **23**: 2971, 2022.

Huang B., Chen Y.-E., Zhao Y.-Q. et al.: Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. - *Front. Plant Sci.* **10**: 677, 2019.

Hussein H.-A.A., Alshammari S.O., Abd El-Sadek et al.: The promotive effect of putrescine on growth, biochemical constituents, and yield of wheat (*Triticum aestivum* L.) plants under water stress. - *Agriculture* **13**: 587, 2023.

Ioannidis N.E., Kotzabasis K.: Effects of polyamines on the functionality of photosynthetic membrane *in vivo* and *in vitro*. - *BBA-Bioenergetics* **1767**: 1372-1382, 2007.

Ioannidis N.E., Sfichi-Duke L., Kotzabasis K.: Polyamines stimulate non-photochemical quenching of chlorophyll *a* fluorescence in *Scenedesmus obliquus*. - *Photosynth. Res.* **107**: 169-175, 2011.

Islam M.J., Mou M.A., Razzak M.A., Lim Y.S.: Exogenous putrescine-mediated modulation of drought stress tolerance in sugar beet: possible mechanisms. - In: Misra V., Srivastava S., Mall A.K. (ed.): *Sugar Beet Cultivation, Management and Processing*. Pp. 441-457. Springer, Singapore 2022a.

Islam M.J., Ryu B.R., Azad M.O.K. et al.: Exogenous putrescine enhances salt tolerance and ginsenosides content in Korean ginseng (*Panax ginseng* Meyer) sprouts. - *Plants-Basel* **10**: 1313, 2021.

Islam M.J., Uddin M.J., Hossain M.A. et al.: Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (*Beta vulgaris* L.). - *PLoS ONE* **17**: e0262099, 2022b.

Junges E., Toebe M., Santos R.F.D. et al.: Effect of priming and

seed-coating when associated with *Bacillus subtilis* in maize seeds. - Rev. Cienc. Agron. **44**: 520-526, 2013.

Kakkar R.K., Sawhney V.K.: Polyamine research in plants – a changing perspective. - Physiol. Plantarum **116**: 281-292, 2002.

Kränlein M., Geilfus C.-M., Franzisky B.L. *et al.*: Physiological responses of contrasting maize (*Zea mays* L.) hybrids to repeated drought. - J. Plant Growth Regul. **41**: 2708-2718, 2022.

Kusano T., Berberich T., Tateda C., Takahashi Y.: Polyamines: essential factors for growth and survival. - Planta **228**: 367-381, 2008.

Li L., Gu W., Li J. *et al.*: Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (*Zea mays* L.) seedlings associated with changes in endogenous polyamines and phytohormones. - Plant Physiol. Biochem. **129**: 35-55, 2018.

Li W.U., Zhang X., Ashraf U. *et al.*: Dynamics of seed germination, seedling growth and physiological responses of sweet corn under PEG-induced water stress. - Pak. J. Bot. **49**: 639-646, 2017.

Lopes M.S., Araus J.L., van Heerden P.D.R., Foyer C.H.: Enhancing drought tolerance in C₄ crops. - J. Exp. Bot. **62**: 3135-3153, 2011.

Meddich A.: Biostimulants for resilient agriculture – Improving plant tolerance to abiotic stress: A concise review. - Gesunde Pflanz. **75**: 709-727, 2023.

Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. - Anal. Chem. **31**: 426-428, 1959.

Namjoyan S., Sorooshzadeh A., Rajabi A., Aghaalikhani M.: Nano-silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes. - Acta Physiol. Plant. **42**: 157, 2020.

Nandy S., Das T., Tudu C.K. *et al.*: Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. - Appl. Microbiol. Biot. **106**: 905-929, 2022.

Pallaoro D.S., Avelino A.C.D., Camili E.C., Guimarães S.C.: Priming corn seeds with plant growth regulator. - J. Seed Sci. **38**: 227-232, 2016.

Pandey V.P., Awasthi M., Singh S. *et al.*: A comprehensive review on function and application of plant peroxidases. - Biochem. Anal. Biochem. **6**: 308, 2017.

Prazeres C.S., Coelho C.M.M.: Osmolyte accumulation and antioxidant metabolism during germination of vigorous maize seeds subjected to water deficit. - Acta Sci.-Agron. **42**: e42476, 2020.

Queiroz R.J.B., Cazetta J.O.: Proline and trehalose in maize seeds germinating under low osmotic potentials. - Rev. Bras. Eng. Agr. Amb. **20**: 22-28, 2016.

Sánchez-Linares L., Gavilanes-Ruiz M., Díaz-Pontones D. *et al.*: Early carbon mobilization and radicle protrusion in maize germination. - J. Exp. Bot. **63**: 4513-4526, 2012.

Souza T.C., Castro E.M., Magalhaes P.C. *et al.*: Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. - Acta Physiol. Plant. **35**: 3201-3211, 2013.

Souza T.C., Magalhães P.C., Castro E.M. *et al.*: Corn root morphoanatomy at different development stages and yield under water stress. - Pesqui. Agropecu. Bras. **51**: 330-339, 2016.

Tyagi A., Ali S., Ramakrishna G. *et al.*: Revisiting the role of polyamines in plant growth and abiotic stress resilience: mechanisms, crosstalk, and future perspectives. - J. Plant Growth Regul. **42**: 5074-5098, 2023.

van Amerongen H., Chmeliov J.: Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. - BBA-Bioenergetics **1861**: 148119, 2020.

van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. **25**: 147-150, 1990.

Voko M.P., Kulkarni M.G., Finnie J.F., Van Staden J.: Seed priming with vermicompost leachate, *Ecklonia maxima* extract-Kelpak® and smoke-water induce heat stress amelioration and growth in *Vigna unguiculata* L. seedlings. - S. Afr. J. Bot. **147**: 686-696, 2022.

Xin L., Zheng H., Yang Z. *et al.*: Physiological and proteomic analysis of maize seedling response to water deficiency stress. - J. Plant Physiol. **228**: 29-38, 2018.

Yemm E.W., Willis A.J.: The estimation of carbohydrates in plant extracts by anthrone. - Biochem. J. **57**: 508-514, 1954.

Zhang X., Lei L., Lai J. *et al.*: Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. - BMC Plant Biol. **18**: 68, 2018.