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Abstract

Excess water is an abiotic stress in plants, but the level at which excess water becomes varies widely between plant
species. We conducted a two growing season replicated excess flooding experiment that was planted with 24 accessions
of perennial ryegrass which had been vegetatively propagated to ensure equal representation of genotypes within
an accession, both cultivars and ecotypes, from various geographical origins. The excess water treatment applied
over the winter periods was achieved with irrigation. Yields increased in the winter-flooded treatment in contrast to
the non-artificial watered control treatment significantly in 2017. In 2018 the same trend could be seen, but was not
significant. Differences in composition of macro- and micronutrient profiles were observed. Sulphur was the only
element with highly significantly increased concentration (0.25%) in flooded samples compared to control. Phosphorus,
copper, iron, manganese, and molybdenum decreased statistically significantly under flooded conditions. In conclusion,
perennial ryegrass is coping extremely well with excess water supplied over the winter period and can utilise it

effectively in spring.

Keywords: chemical composition, excess water, Lolium perenne, macro elements, trace elements, waterlogging.

Introduction

Permanent agricultural grassland and other natural and
semi-natural grassland areas in Europe provide a wide
range of ecosystem services and are a key component
of agroecological systems (Eurostat 2018). Many
opportunities can be derived from grass biomass, e.g.,
source of high quality protein feed, high quality protein

food after processing, alternative energy sources from
anaerobic digestion, and source of high-value compounds
(Shinde et al. 2023). However, agricultural grasslands
are negatively impacted by increasing incidences of
abiotic stresses associated with extreme weather events
due to climate change. The abiotic stress conditions that
are posing challenges for plants and grasslands include
salinity, drought, flooding, cold, and freezing (Loka et al.
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2019). Climate associated changes in precipitation
have led to increased incidences of extreme events like
flooding (IPCC 2014). Extreme flood events may favour
ruderal plant species which are able to respond rapidly to
environmental change. Additionally, wet grasslands may
dry out during heatwaves and drought. As such, forage
for livestock will likely become less reliable, which
necessitates adaptations to cutting and grazing regimes
(Joyce et al. 2016). This can be further exacerbated by
challenges to machine operations in wet environments
that can result in substantial damage to soil, grasslands,
and ultimately productivity. Additionally, it may not be
possible to operate machinery during particularly wet
periods (Hargreaves et al. 2019).

Under flooding or waterlogging only the root sphere
is fully exposed to water. In contrast, the shoots are either
partly or completely covered in water under submergence.
Oversaturation of the soil can impact on the whole
ecosystem when all available oxygen in the soil is rapidly
consumed by soil microbial organisms and by plant root
respiration (Vashisht ef al. 2011). Some plant species can
overcome the consequences of excess water by forming
aerenchyma, an anatomical adaptation to facilitate
exchange of gases between the shoot and root, however
perennial ryegrass has not been noted for this coping
mechanism.

Partial or full submergence enhance stress further by
the attenuation of carbon dioxide influx for photosynthesis.
Plants have evolved an escape mechanism underpinned by
induction of shoot elongation to enable the shoot to emerge
from submergence. The extra growth requires additional
oxygen regulated by the hormone ethylene (Voesenek
et al. 2003).

Species- and genotype-dependent variation in
adaptation to flooding stress has been found in several
perennial grass species. McDonald et al. (2002)
characterised Phalaris arundinacea and Arundo donax as
well-adapted to waterlogging conditions. Within species
differences in waterlogging were found in Dactylis
glomerata (Etherington 1984). For some species, e.g.,
Panicum virgatum, their habitat (lowland vs. upland) have
also been shown to contribute to flooding stress tolerance
(Barney et al. 2009). Using a panel of 100 perennial
ryegrass accessions, Yu et al. (2012) showed differential
responses to seven days of submergence and seven days of
recovery, suggesting a potential for breeding for flooding
tolerance. The genetic potential for breeding for flooding
tolerance has also been demonstrated in a Festulolium
hybrid between Lolium perenne and Festuca pratensis
that has been shown to be able to reduce the runoff by
51% compared to a leading UK nationally recommended
Lolium perenne cultivar over two years. This reduced
runoff was due to intense initial root growth followed
by rapid senescence, especially at depth (Macleod et al.
2013).

Waterlogging affects plant nutrients due to alterations
in element solubility in the soil when it is under anoxic
conditions. Floods are often accompanied by a decrease
in soil pH, which increases the solubility of macro
and micronutrients, including iron, manganese, and

phosphorus as well as potential toxic metals. A strong
reduction in diffusion of gases in floodwaters limits
the availability of oxygen and carbon dioxide for aerobic
respiration and photosynthesis and adds on to nutrient
imbalances (Bailey-Serres et al. 2012). In an experiment
with eight grasses and four legume species under flooding
conditions, it was demonstrated that primary production
was negatively impacted, while nitrogen losses in the form
of the potent greenhouse gas, nitrous oxide, were enhanced.
Interestingly, the grasses were comparably better resistant
to flooding compared to the legumes, whereas the legumes
exhibited better recovery overall (Oram et al. 2021).
Although it is believed that productivity of grasslands is
lower on marginal land sites, including very wet sites, it has
been reported that under wet and flooded sites, comparably
high yields can be achieved (Meehan et al. 2017).

The aim of this study is to explore the tolerance
potential of perennial ryegrass accession to winter
flooding by determining biomass production and elemental
composition in the subsequent spring vegetation period.

Materials and methods

Plants and cultivation: Seeds of 24 perennial ryegrass
cultivars and ecotypes were received from various breeders.
Eight single plants per accession were raised in small
insert trays in a glasshouse in Oak Park Carlow/Ireland.
The seedlings were tillered in the glasshouse into multiple
identical plants and were allowed to grow to a multi tiller
stage until transplanted as mini swards consisting of four
clonal plants of one genotype in May 2016 into the field
in Oak Park Carlow (52°51'43"N, 6°55'07"W; 58 m above
sea level). The plants were cut at regular intervals during
the establishment year to allow them to grow into dense
mini lawns plots (35 x 35 cm which corresponds to
0.1225 m?).

The field design was a randomized complete block
design. The experiment had 192 entries (24 accessions
with eight individuals each), one flooded and one control
treatment and each treatment consisted of three blocks.

Due to the small size of the plots manual harvests
corresponding to the first cut of the year were carried out
in 2017 and 2018 (2017: 03/05/ and 04/05/; 2018: 30/04/
and 01/05/). These harvest dates are typical first cut dates
in Ireland. Yield was measured as fresh mass (FM), by
weighing the biomass harvested in 0.1225 m?, and as dry
mass (DM), by weighing the same biomass after drying
at 60°C until constant mass was attained (ca. 48 h).
The remainder of each of those two years the plots were
cut for maintenance without measuring yield.

Flooding treatment: The flooding treatment plots were
artificially waterlogged on the 5% of December 2016
using a boom irrigator due to the dry conditions in this
particular winter. The control treatment plots did not
receive any artificial water addition. Throughout three
months, a total of 1 620 mm of water was applied evenly
over the waterlogged treatment blocks to achieve artificial
waterlogging. In the winter field season 2017/2018 we
relied on natural flooding and only added 36 mm of
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The twenty-four accessions of perennial ryegrass in alphabetical order, their origin, ploidy status, maturity group, and further information.
*These breeders’ seeds were received coded, but destination of breeding market is known.

Accession Breeder Ploidy Maturity group Recommended list
AberGreen IBERS 2n intermediate UK

AberZeus IBERS 2n intermediate UK

Arolus Agroscope 2n early Switzerland

Bal4155 IBERS 2n intermediate UK

BARO3* Barenbrug 2n intermediate Romania

BAROS5* Barenbrug 2n intermediate Netherlands

BARO6* Barenbrug 2n late Netherlands

Carraig Teagasc 4n intermediate Ireland

Cashel Teagasc 2n intermediate Ireland

Denver Advanta/DLF 2n late Ireland

Giant Teagasc 4n intermediate Ireland

Glencar Teagasc 4n late Ireland

LP0515 Agroscope 2n early highland x low land ecotypes
LP1005 Agroscope 2n early highland x low land ecotypes
LP9155 (Canis) Agroscope 2n intermediate Released for German market
Picadilly EuroGrass 2n late Ireland

RHZ110123 Ottoberg Swiss ecotype 2n early low land ecotype
RHZ110124 Miimliswil Passwang Swiss ecotype 2n early high land ecotype
RHZ110125 Wildberg Swiss ecotype 2n early low land ecotype
RHZ110127 Biitschwil Zwiselen Swiss ecotype 2n early low land ecotype

Rodrigo EuroGrass 2n intermediate Ireland

Solomon Teagasc 2n intermediate Ireland

Soriento EuroGrass 2n late Ireland

Twymax CPB Twy./DLF 4n late Ireland

Weather data for two seasons of flooding field trial. Data obtained from Met Eireann (Met Eireann 2019) weather station at Oak Park,
Carlow, Ireland. In addition to rainfall, water was added with a boom irrigator (*these values are for the waterlogged treatment only,
the control treatment received no additional water besides rainfall).

Season/Month Oct Nov Dec Jan Feb Mar Apr Total
2016-2017

Rainfall [mm] 323 26.3 80.2 26.2 57.8 66.6 15.8 305.2
Evaporation [mm] 36.5 13.9 10.9 14.9 25.4 51.8 71.2 224.6
Days flooded* 3 3 15 9 13 8 0 51
Added artificial flooding [mm]* 0 0 540 540 540 0 0 1620
2017-2018

Rainfall [mm] 62.9 45.8 84.2 108.1 38.7 98.1 73 510.8
Evaporation [mm] 35.6 13 11.9 17.5 24 43.8 77.3 223.1
Days flooded* 4 12 19 17 10 15 8 85
Added artificial flooding [mm]* 36 0 0 0 0 0 0 36

additional water with a boom irrigator over a month to
the flooding treatment blocks. The control treatment
was slightly elevated and was at no time in both winter
waterlogged. Water saturation of the soil in both treatments
was recorded with probes (Delfa-T devices).

Chemical analysis: Water and soil analysis were performed

at Teagasc Johnstown Castle research laboratory. Briefly,
the water samples were acidified (pH < 2) with HCI and
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stored at 4°C. Total phosphorus (TP) was determined using
the Hach Ganimede (Diisseldorf, Germany) P analyser, by
reaction of phosphate ions with molybdate and antimony
ions to form an antimony-phosphomolybdate complex
that was reduced to phosphorus molybdenum blue using
ascorbic acid at 150°C and 0.6 MPa. The absorbance
of this compound was measured spectrophotometrically
at 880 nm. Total nitrogen (TN) in the water was
determined using the Hach Ganimede N analyser, through
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the oxidation of inorganic and organic bound nitrogen
to nitrate with peroxidisulfate using alkaline digestion
at 150°C and 0.8 MPa. The nitrate concentration
was measured photometrically using UV self-absorption
in a differential measurement at 210 and 228 nm.
Representative soil samples, collected from the field
in October 2015, were dried (40°C), sieved through
a 2-mm sieve and homogenized. Soil-available P and K
were determined by inductively coupled plasma optical
emission spectroscopy (ICP-OES) (5100 ICP-OES,
Agilent, Santa Clara, California, USA), after extraction
with Morgan’s reagent. Moisture and organic matter
content of soil were determined gravimetrically, by
oven-drying (Universal Oven UF110, Memmert, Ireland)
the sample at 105°C overnight and subsequently igniting
in a muffle furnace (B/80 Muffle Furnace, Nabertherm,
Ireland) at 500°C until constant mass was attained. Soil
pH was measured potentiometrically in a 1:5 soil:water
with an InLab®Routine Pro-ISM combined pH electrode
(Mettle, Toledo, Spain).

Elemental composition of ryegrass was determined
for samples from the 2017 season. An in-house protocol
based on Method 30514 (Link et al. 1998) was used to
decompose the plant matrix. Briefly, a 0.50 (= 0.05) g
ryegrass sub-sample, previously dried and ground to pass
through a 1.0-mm screen using a Retsch cutting mill, was
accurately weighed into a pre-cleaned digestion liner
and decomposed by microwave assisted acid digestion
(Multiwave 3000, Anton Paar, Graz, Austria) using 10 ml
of concentrated nitric acid (HNO; 67%, trace element
grade, VWR). The digested sample was poured into
a volumetric flask (50 ml), which was subsequently
filled to the mark with ultrapure water (conductivity
< 0.055 pS cm™') and the resulting suspension filtered
(MN 640W, Macherey-Nagel, Diiren, Germany) to
a plastic container. The elemental concentration of Al, Ca,
Cu, Fe, K, Mg, Mn, Mo, P, S, and Zn in the digest was
determined by 5100 ICP-OES, Agilent (Table 1 Suppl.).
Multi-elemental calibration standard solutions were
prepared from custom-made commercial multi-element
standard solutions (Custom-made multi-element MW
digestion calibration stock standard 1 and stock standard 2,
Reagecon). An independent custom-made commercial
standard solution (Custom-made Multi-element MW
digestion QC stock standard, 7e/lab) was used to prepare
calibration control verification solutions, measured
after the calibration standards and at regular intervals
during the analysis run to confirm the concentration of
the calibration standards and to monitor instrumental drift.
To ascertain analytical trueness two control materials
(CM) were used: WEPAL 234.1 [Banana (leaf)/Musa sp.,
Ecuador] and 203.3 [Cabbage (leaf + stalk)/Brassica
oleracea, Netherlands]. Recoveries in the range of
80 - 120% were obtained. Relative differences between
sample duplicates, RDD [%], were used to monitor
the precision of the analytical procedure. Sample
duplicates were included in each batch. The RDD values
were typically < 20%, which was considered acceptable
for the methodology used. To assess contamination,
reagent blanks (RB) were included in each sample batch.

Statistical analysis: Descriptive analysis, outliers’
evaluation, normality, homogeneity of variances, and
ANOVA were performed using the software GenStat,
22 edition (VSN International, Hemel Hempstead, UK).
At the population level, analysis of variance was done by
entering the values of the eight genotypes per accession
as replicates within blocks, i.e., a total of 24 entries per
accession per water treatment. The block structure was
included and accession, water regime (control vs. flooded)
and year, were entered as factors. Fresh and dry masses
were the variates considered. At the genotype level,
the analysis of variance was done using genotype, water
regime, and year as factors, a randomized block structure
with three replicates per genotype, i.e., the accession of
each genotype was not taken into account.

Results

Average yields: Fresh yield averages in 2017 and 2018 in
the control treatment were 97.1 and 118.8 g, respectively,
and in the water excess treatment in 2017 and 2018 137.6
and 180.0 g, respectively.

Dry yield averages in 2017 and 2018 in the control
treatment were 33.36 and 36.45 g, respectively, and in
the water excess treatment in 2017 and 2018 40.58 and
37.49 g, respectively. In term of dry biomass yield in 2017
under control conditions the top two performers were
Bal4155 and LP1955 (43.0 g), followed by Ottoberg
(39.6 g) (Table 1). In 2017 under the flooded treatment
the top performer was Bal4155 (57.7 g), followed by
LPO515 (56.8 g), Solomon (47.7 g), and LP9155 (47.2 g).
In 2018 the top performers for dry biomass yield under
control conditions were Solomon (46.9 g), Buetschwil
(44.5 g), Arolus (44.2 g), and Twymax (41.0 g). In 2018
under the flooded treatment the top performer was Solomon
(67.3 g), followed by Rodrigo (59.1 g), Twymax (54.4 g),
and Arolus (53.6 g) (Table 1). In general, top performers
were breeding materials, but also some ecotypes featured
in the top performers like Ottoberg and Buetschwil. One
accession bred from ecotypes, LP0515, was also amongst
the top performers in 2017 under flooded conditions.

Performance of accessions by year under control
and flooded conditions: In 2017 and 2018 accessions
which performed better under flooding compared to
control conditions were matching between the two years
(AberZeus, Arolus, Buetschwil, Carraig, Denver, Giant,
LP0515, LP1005, Ottoberg, Rodrigo, Solomon, Twymax,
and Wildberg). The comparative top performers under
flooding for those two years were Arolus and Solomon
(Table 1).

Within accession performance under control and
flooded conditions averaged over two years: In 12 out of
24 accessions a high frequency of individuals (> 6/8) with
higher dry biomass under flooding conditions as compared
to control conditions was found: AberZeus (6/8), Arolus
(7/8), Bal4155 (7/8), Buetschwil (6/8), LP0515 (7/8),
Rodrigo (7/8), Solomon (6/8), Twymax (6/8), Wildberg
(7/8), Ottoberg (8/8), LP1005 (8/8), Denver (8/8) (Fig. 1).
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Analysis of variance (ANOVA) at the accession level
(Table 2 Suppl.) for both fresh and dry mass had significant
or highly significant variation amongst accessions and
water treatments. Year had a significant impact only in
fresh mass production, with increased biomass observed
in 2018. Significant 2-way interaction was observed for
accession x year and water treatment x year, but not for
accession x water treatment, for both fresh and dry mass.
ANOVA atthe genotype level (Table 3 Suppl.) for both fresh
and dry mass had significant or highly significant variation
amongst genotypes and water treatments. As verified for
accessions, year variation was highly significant for fresh
mass, but not for dry mass. At the genotype level, all
three 2-way factor’ interactions (genotype x year, water
treatment x year, and genotype x water treatment) were
statistically significant to explain variation in fresh and dry
mass. No significant differences in fresh and dry mass were
identified for 3-way interactions of factors at accession or
genotype levels.

Water and soil chemical characterization: The nutrient
input from lake water in 2017 were 1 kg P ha' and
10 kg N ha'l. In 2018 very little artificial irrigation was
added to the trial and hence the input from lake water
was negligible. Chemical analysis before water treatment,
characterized the field as having a neutral mineral soil
with adequate nutrients’ level for grassland, according to
national indices (Wall and Plunkett 2020), with no inputs
required. Accordingly, soil pH was 7.3, soil organic matter
was 5.1%, available P and K were 7.2 and 125 mg L.

Average content of elements in ryegrass: From the
macronutrients measured in ryegrass samples (control
treatment), K showed the highest content (2.0%), followed

Fig. 1. Biomass of individual genotypes within populations in
control vs. flooded treatments. Colour of points represented
population: AberZeus orange, Arolus dark blue, Bal4155 dark
green, Biitschwil grey, Denver red, LP0515 yellow, LP1005
light blue, Rodrigo violet, Solomon brown, Twymax light green,
Wildberg black. The line represents the 1:1 ratio.

by Ca (0.55%), P (0.25%) ~ S (0.23%), and Mg (0.10%).
Micronutrients content in control ryegrass samples was
as follows: Fe (73 mg kg') > Zn (22 mg kg') > Mn
(16 mg kg') > Cu (6.2 mg kg') > Mo (3.5 mg kg")
(Fig. 1 Suppl.). The overall mean content of Al in control
samples was 31 mg kg'. While the order presented above
was also observed for the flooded ryegrass samples,
the mean values for some elements differed: S was
the only element with increased concentration (0.25%) in
flooded samples compared to control (P < 0.001), while P
decreased slightly to 0.23%, albeit significantly (P <0.001);
Cu concentration decreased to 5.6 mg kg™ (ca. 10% lower,
P < 0.001), Fe and Mn concentrations decreased to 59
and 13 mg kg, respectively (ca. 20% lower, P < 0.001),
while Mo concentration decreased the most to 1.4 mg kg!
(ca.60% lower, P<0.001). The overall mean concentration
of Al in flooded samples was 21 mg kg™,

Elemental concentration of accessions under control
and flooded conditions: The average elemental content
for each accession and water treatment is presented in
Table 2. Analysis of variance revealed that the content
varied significantly between accessions (P < 0.001) and
between water treatments (P < 0.05) for all elements
evaluated. Compared to the overall means, accessions
Denver, Soriento, and Twymax showed consistently high
elemental content while Bal4155, Bar08, and Ottoberg
presented lower content for most of the elements. Three
distinct trends were observed for the variation in elemental
content of the 24 accessions with water treatment
(control/flooded): for Ca, K, Mg, and Zn, the mean content
of control and flooded samples was essentially the same,
although one to three accessions revealed small, but
significant differences; for S, the mean content of flooded
samples was significantly higher than in the control
samples for all accessions, except for Solomon (equal
content for control/flooded treatments); for the remaining
elements (Al, Fe, P, Mn, Mo, and Cu), the mean content
in samples from the flooded treatment was lower than
in the control samples for all the accessions, and that
difference was significant for most of the accessions (1 to
7 accessions showing no significant difference).

Within accession elemental content under control and
flooded conditions: In the nested ANOVA to accommodate
variation within accessions the elemental content had
significant (P < 0.05) or highly significant (P < 0.001)
variation with all genotypes within accession, and most
genotypes within accession by treatment (exception for K
and Cu). Genotypic variation is presented for accessions
Denver and Bal4155 in relative difference between control
and flooded for K, P, S, and Mo content (Fig. 2). These
were chosen as examples with high and lower elemental
content, respectively.

Discussion

The experiment was conducted with flooding and
waterlogging over the winter months over two winter
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TOLERANCE POTENTIAL OF PERENNIAL RYEGRASS TO WINTER FLOODING

Fig. 2. Genotypic variation in K, P, S, and Mo in accessions Denver and Bal4155 relative to water treatment. Variation within genotype
is presented as the relative difference between elemental content in control and flooded treatments.

periods, but the trial was never submerged. The experiment
of Yu et al. (2012) was a submergence trial; hence our
experiment is not fully comparable to the trial reported
by Yu et al. (2012). But we also found under waterlogged
soil an increase in growth rate in many of the accessions.
This was statistically significant for 2017. In 2018 this was
only significant for some of the accessions. In our trial,
perennial ryegrass was very productive under flooding
treatment and recovered very well to produce even higher
biomass yield after flooding in many cases. This very good
recovery and resilience of perennial ryegrass has also been
shown by Oram ef al. (2021) when it was waterlogged for
three weeks and then allowed to recover for five weeks
until harvest. Meehan et al. (2017) reported the same
performance of perennial ryegrass under control, dry,
and flooding conditions. In their analysis the significant
differences from year to year were found which are
comparable to the experiment reported here.

However, a significant reduction in biomass
productivity under water excess conditions might be
expected if the water stress was combined with heavy
treading by livestock as observed by Nie et al. (2001).
Similarly, mechanical damage by tractor tracks could
reduce biomass yield under wet conditions when damaging
soil structure up to 14.5% (Hargreaves et al. 2019).

There was no statistically significant difference in
the first cut herbage DM production between treatments
in 2018. On the other hand, herbage DM production was
0.589 t ha'! higher on the waterlogged treatment compared
with the non-waterlogged control in 2017. This difference
can be explained, at least in part, by nitrogen applied
with the irrigation water (I 620 mm in 2016) during
the winter, which contained 10 kg ha! of N and 1 kg ha!
of P. A typical herbage DM production response to
additional N applied to grassland is approximately
33 kg ha' per kg of additional N (Humphreys et al.
2003, Murphy et al. 2013). Hence, an additional 10 kg ha'!
of N in irrigation water could potentially increase annual

herbage DM production by approximately 0.33 t(DM) ha’!,
which would partly account for some of the difference
between treatments in 2017. It is possible that the
additional P in irrigation water could also have contributed
to additional herbage DM production. However, taking
into account the high soil test P status of the site during
the experiment it is unlikely that the contribution of
additional P in the irrigation water would have been
substantially additive to annual herbage DM production
over the contribution of the additional N. Obviously these
nutrients would have no impact of herbage DM production
during 2018; being taken up by the herbage DM during
2017.

The elemental composition of ryegrass agrees with
previous studies for macro and micronutrients, albeit huge
variation has been reported. For example, Crush ef al.
(1989) reported values of 0.27 - 0.28% for P, 3.25 - 3.49%
for K, 0.44 - 0.51% for Ca and 0.21 - 0.22% for Mg and
Crush et al. (2018) reported values of 66.4 - 127.2 mg kg'!
for Mn, 4.20 - 7.60 mg kg for Cu and 0.53 - 0.97 mg kg!
for Mo.

The macronutrients content in ryegrass showed
differential variation with the water treatment: similar
values for K, Ca, Mg, higher values for S, and lower values
for P were observed in the flooded samples compared with
control. The reasons for the increase of S and decrease in
P content in waterlogged samples are not straightforward,
since a decrease in soluble S and an increase in soluble
phosphorus compounds when soil is flooded is expected
(Ponnamperuma 1972). Nevertheless, previous studies
have reported that phosphate availability to the plant is
reduced by the waterlogging treatment in grasses and rice
(Humpbhries 1962).

For the micronutrients under study, the content in
flooded samples was lower compared to control samples,
except for Zn. This may indicate a potential decrease in
quality for some micronutrients under flooded conditions.
Mo content exhibited the highest decrease due to flood, with
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less than half of the content observed in control samples,
probably related with a decrease in soil availability under
anoxic conditions, due to an increase of reducing Mo forms
(Mo IV and V) in organic compounds that are usually less
soluble and less available (Stiefel 2002) as well as by
nutrient interactions in plant uptake, with the increase in
plant sulphur absorption possibly inducing antagonistic
effects on plant Mo uptake, while reductions in plant
phosphorus content weakens the synergistic uptake of Mo
by plants with nitrogen addition (Li ef al. 2023).

Directions for the future contain to extend official cultivar
testing to include testing under challenging environmental
conditions. Since mixed swards have showed more
resilience towards excess water, selection and breeding
for enhanced performance of perennial ryegrass in species
mixtures would help to enhance ecosystem benefits much
more. Substantial variation among accessions in response
to flooding suggests that in the future, breeding may play
an important role to improve the resilience of perennial
ryegrass to flooding. Holohan et al. (2019) showed
an improvement in ecological adaptation of grassland
species by selection in just a few generations. Detailed
ecophysiological studies are necessary to determine
the optimal water saturation of soil types for perennial
ryegrass and the point in the physiology of the species
from where excess water will be detrimental. It would
be desirable to investigate variation in root growth under
flooding and soil compaction conditions to select for
accessions and within accessions for variation which can
withstand these adverse conditions better. Decrease in root
aerobic respiration rates is one of the earliest responses
of plants when under flooded conditions and could be
used to select for phenotypes to better withstand flooding
conditions (Colmer 2003). Modern breeding tools like
genome editing may be also a way forward to improve
very directed tolerance of species towards adverse
environmental conditions (Sustek-Sanchez et al. 2023).

However, the choice of species to suits is ecological
niche needs to be kept in mind planting grasslands for
certain ecological and geographical conditions.
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