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Abstract

Opportunities exist to accelerate genetic gain in forage breeding using genome-wide selection approaches. In this study,
we evaluated rapid cycle recurrent genomic selection (GS) as a means of improving genetic gain for value of annual
forage yield. A small population of tetraploid half-sib families was evaluated for seasonal forage yield over two years, and
the maternal parent plants were genotyped and genomic prediction models developed. The GS model for value of annual
forage yield had a predictive ability of 0.23. An initial round of among-family selection based on field evaluations and
within-family selection using genomic estimated breeding values was performed. This was followed by two further
GS cycles. New synthetics were produced after each round of selection and were established in a field trial alongside
the starting population. A positive response to selection was observed in new synthetics after two successive rounds
of rapid cycle recurrent genomic selection before declining in the third round. The genetic gain for the value of annual
forage yield was 2.4% from Cy SYN-1 to C; SYN-1 and 6.4% from C; SYN-1 to C; SYN-1. In the case of C, to C;,
genetic gain was compounded by among-family selection based on field evaluations. The implementation of rapid cycle
recurrent genomic selection offers an opportunity to increase genetic gain; however, the predictive ability is likely to

decay rapidly as selection candidates become more distant from the training population.
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Introduction

Perennial ryegrass (Lolium perenneL.) is the mostimportant
forage grass species in Ireland and temperate regions of
the world. Yield is an important trait for perennial ryegrass
to provide natural low-cost feed for ruminants (Wilkins
and Humphreys 2003, Humphreys 2005). High-yielding
cultivars produce more herbage, making them a relatively
cheap and high-quality feed for animals. However,
in a typical grazing system, there is excess grass growth

during the summer months and a growth deficit in spring
and autumn relative to animal demand. Surplus yields
from summer are typically harvested and stored as silage
to compensate for feed deficits in spring and autumn.
Silage production is an expensive process that decreases
the overall profitability of farms (O’Kiely and Flynn
1987). Developing cultivars with increased yield in spring
and autumn could potentially increase the overall grazing
season and decrease supplemental feed costs (Wilkins and
Humphreys 2003).
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McEvoy et al. (2011) developed a pasture profit index
(PPI) to identify and rank cultivars for profitability at
the farm level. PPI assigns economic values for key traits
such as dry matter yield (spring, summer, and autumn
yields), first and second cut silage yield, dry matter
digestibility, and persistency. PPI was based on simulating
a spring-calving dairy farm model over a period of
12 months. Currently, perennial ryegrass cultivars produce
on average 12.3 5.5 t(DM) ha! yr' (Gilliland et al. 2021)
under simulated grazing and there is a potential to increase
forage yield further. However, the genetic gain for annual
dry matter yield is approximately 0.3 to 0.5% per year
(Wilkins and Humphreys 2003, McDonagh et al. 2016)
and these rates of genetic improvement are significantly
lower than in cereals, which can be 1.0 to 1.5% per year
(Ofversten et al. 2004).

Genomic selection offers an approach for accelerating
genetic gain during breeding (Meuwissen ef al. 2001) where
molecular marker data is utilised to estimate breeding
values. Genomic prediction has revolutionized animal
breeding and has been successfully applied (Meuwissen
et al. 2016); however, it is still in the early phase of
plant breeding. Previous studies have demonstrated
the potential of genomic prediction for diploid perennial
ryegrass populations (Fe¢ et al. 2015a,b; Lin et al. 2016,
Byrne et al. 2017, Faville et al. 2018, Arojju et al. 2018,
2020; Esfandyari et al. 2020). However, there are limited
empirical studies on genomic selection (Faville ef al. 2022)
and none have evaluated rapid cycle recurrent genomic
selection in perennial ryegrass.

In this study, we empirically evaluated rapid cycle
recurrent genomic selection by implementing three
recurrent cycles of genomic selection (GS) to improve
the value of annual forage yield. New synthetics produced
after each round of GS were evaluated in a field trial along
with the starting population to determine the response to
genomic selection.

Materials and methods

Training population development and trial design:
The tetraploid population used in this study was developed

from a commercial cultivar, which has been on the Irish
recommended list since 2012. The cultivar Kintyre was
initially developed by intercrossing 75 plants from each of
four full-sib families. A set of 120 plants from the cultivar
was clonally propagated and each clone planted out in one
of seven blocks in a polycross nursery and allowed to cross
pollinate. Seeds from matching maternal parents were
harvested and bulked, producing half-sib families. Out
of the original 120 half-sib families (HSFs), 109 families
produced enough seed for a replicated field trial with two
managements. In each management regime, HSFs were
planted out in one of seven experimental blocks, where
each block contained two replicates of 16 test families and
two control cultivars. The two control cultivars (Kintyre
and Abergain) were consistent across experimental blocks.
Plots were established in 2014 and data was collected in
2015 and 2016 at Oak Park, Carlow, Ireland. Yield was
measured as fresh mass under two management schemes,
1) simulated grazing management with seven harvest
cuts per year (each cut every four weeks from March to
October) and 2) conservation management with silage cuts.
Each plot size was 6 x 1.5 m and forage was harvested to
approximately 4 cm above ground using a Haldrup forage
plot harvester.

Phenotyping and data analysis: In the simulated grazing
management, yield data were collected from at least seven
harvest cuts in each of two years. Total yield in each year
was the sum of all seven harvests. We estimated the value
of the annual forage yield using weightings from the
PPI (McEvoy et al. 2011). Cuts in the simulated grazing
management were divided into spring yield (cuts 1 and 2),
summer yield (cuts 3, 4, and 5), and autumn yield (cuts
6 and 7). Yields in spring, summer, and autumn were
multiplied by the weightings 0.16, 0.04, and 0.11,
respectively (McEvoy et al. 2014) to ensure yield in
spring was valued higher than forage yield in autumn,
and forage yield in autumn was valued higher than forage
yield in summer. The value of annual forage yield was then
calculated by summing spring, summer, and autumn yield.
Under conservation management, we focussed on yield data
of the first cut silage. In total five traits from the simulated
grazing management (total annual yield, value of annual

Harvest dates for forage yield measurements under conservation and simulated grazing managements.When calculating the value of
annual forage yield, a weighting was applied to each harvest depending on when the harvest took place. The weighting assigned to each

cut is shown in the table.

2015 2016
Simulated grazing management Weighting
Harvest 1 09/04 to 10/04 14/03 to 15/03 0.16
Harvest 2 29/04 to 01/05 18/04 to 19/04 0.16
Harvest 3 21/05 to 22/05 12/05 to 13/05 0.04
Harvest 4 10/06 to 19/06 07/06 to 08/06 0.04
Harvest 5 15/07 to 17/07 04/07 to 05/07 0.04
Harvest 6 10/08 to 12/08 04/08 to 05/08 0.11
Harvest 7 07/09 to 08/09 14/09 to 21/09 0.11
Conservation management
First cut silage 21/05 to 22/05 12/05 to 13/05 na
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forage yield, spring, summer and autumn yields) and one
trait from the conservation management (first silage cut)
were used for further analysis. Phenotypic analysis was
carried out in two stages. In stage one, the mean of controls
in each experimental block and mean of controls across all
seven experimental blocks were calculated. An adjustment
value was calculated for each experimental block by
subtracting the mean of controls across all blocks from
the mean of controls within a block. This adjustment
value for each experimental block was then used to adjust
values for each test family within that experimental block.
In stage two, adjusted values were used to fit a mixed
model with family as a random effect, and year as fixed
effect, to obtain best linear unbiased predictors (BLUPs)
for all six traits (calculated in /me4 according to Bates
et al. 2015). The heritabilities on a half-sib family mean
basis were calculated as follows:
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where G; is half-sib family variance, Giy is the half-sib
family by year variance, o, is the residual variance, y is
the number of years, and r is number of replicates.

Genotyping and variant calling: DNA was extracted
from leaf samples of maternal plants using a standard cetyl
trimethyl ammonium bromide (CTAB) method (Doyle
1991). A genotyping by sequencing (GBS) approach based
on genome complexity reduction with restriction enzymes
(Elshire et al. 2011) was used for library preparation
and was carried out as a service by LGC Genomics
(Berlin, Germany). Sequence reads were quality filtered,
demultiplexed and aligned to the reference perennial
ryegrass genome (Byrne et al. 2015) available at the
time. All GBS data has been submitted to the NCBI SRA
under BioProject PRINA1013016. After demultiplexing,
genotype calling was done according to Li et al
(2014) where no distinction was made among the three
heterozygous states. Briefly, for each SNP a minimum of
11 reads were required to call a homozygote (i.e., AAAA).
If fewer than 11 reads were present, the genotype was
considered as missing to avoid misclassifying a triplex
heterozygote (i.e., AAAT) as homozygous. To call a SNP
heterozygous, two reads per allele were required and
the proportion of reads supporting the less frequent allele
needed to be greater than 0.10, otherwise it was considered
as a missing genotype. The data set was filtered to remove
SNPs with a minor allele frequency less than 5% and more
than 50% of the data missing. The final SNP set consisted
of 45 569 genome wide markers.

Genomic prediction models and cross validations:
Genomic prediction was carried out using the SNP data
set, and the A.mat function of the r*BLUP package
(Endelman 2011) was used to impute missing data.
We used ridge regression BLUP (rrBLUP) with the mixed
solve function of »rBLUP package to develop genomic
prediction models for each trait described above. Monte

Carlo cross-validation (1 000 iterations) was carried out
with an 80:20 split between training and test set. Predictive
ability was measured as the Pearson correlation coefficient
of genomic estimated values and trait BLUPs determined
from field evaluations averaged over 1 000 iterations.
We assessed predictive ability for the following traits;
spring yield, summer yield, autumn yield, annual forage
yield, first cut silage, and value of annual forage yield.

Implementation of genomic selection for value of annual
forage yield: In an initial round of within-family selection
with genomics, seed from the top five HSFs for value of
annual forage yield (one family with insufficient seed
was replaced with next in line) were germinated and 240
seedlings from each family were selected for genotyping
(Fig. 1). Genotyping and data analysis was carried out as
described for the training population. Genomic estimated
breeding values (GEBVs) were calculated for each plant
using models developed for the value of annual forage
yield on the complete training population. The GEBVs
were ranked within each HSF and the top thirty seedlings
from each family were selected and established in a field
isolation in January and allowed to cross-pollinate (oats
without application of a plant growth regulator was used
as a pollen barrier). Seed (C1 SYN-1) was harvested from
the isolation in August and seed germinated to establish
1 008 seedlings for genotyping. Again, GEBVs for
the value of annual forage yield were determined for each
seedling, ranked, and the top 100 candidates established in
a field isolation, allowed to cross-pollinate, and C2 SYN-1
seed harvested. A third round of genomic selection
was performed with 1 000 seedlings from the previous
C2 SYN-1 and again the top 100 candidates were
established in a field isolation, allowed to cross-pollinate,
and C3 SYN-1 seed harvested.

Evaluation of new synthetic populations: In addition to
the three SYN-1s produced (C; SYN-1, C, SYN-1, and
C; SYN-1), SYN-2s were also developed from C; SYN-1
and C, SYN-1 seed. C; SYN-2 seed was not available
when starting this evaluation trial. SYN-2 seed was
produced through random mating of SYN-1 seed in field
isolations. The synthetic populations were established
in an experimental field plot trial (plot size 6 x 1.5 m)
alongside the starting population of Kintyre (Co). The trial
was established as a randomized complete block design
with four blocks. The plots were evaluated for forage
yield (measured as fresh mass) in a simulated grazing
management over two years following an establishment
year. Each trait was analysed using a linear regression
model in R (R Core Team 2013) with population ID, year,
and block as model parameters. Estimates of the marginal
means were calculated with the emmeans package (Lenth
et al. 2023).

Results

Phenotyping a training population: The population used
for training the genomic selection models was evaluated
in two management regimes (conservation, simulated
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Fig. 1. Overview of reference population development and rapid cycle recurrent genomic selection implemented in this study.
Genotyping was carried out using genotyping-by-sequencing based on complexity reduction with restriction enzymes. GS - genomic
selection, WF, - within-family genomic selection. Created with BioRender.com.

grazing), and the descriptive statistics are presented
in Table 1. The heritability ranged between 0.22 for
the first cut silage and 0.54 for value of annual forage yield
(Table 1).

The correlation between annual yield and value of
annual forage yield was high (Fig. 2), and heritability
was similar for both traits (Table 1). The correlation
between the first cut silage measured under conservation
management and forage yield traits measured under
simulated grazing management was low (Fig. 2).
The highest correlation (0.19) was with spring forage yield
and the lowest (0.09) with autumn forage yield, likely
reflecting a greater difference in timing between first cut
silage and autumn yields in comparison to spring yield.
Furthermore, Kendall rank correlations between first cut
silage and simulated grazing yields were all below 0.12.
Accuracy of genomic selection models for forage yield:
A final SNP set, consisting of 45 569 SNPs, was identified

in the training population. There was no clear clustering
of maternal plants, as observed using principal component
analysis (PCA) of the marker data (Fig. 3). The lack of
structure in the population is not unexpected considering
that it is composed of plants taken from a cultivar that was
originally developed by intercrossing 75 plants from each
of four full-sib families.

In this study, we first evaluated the accuracy of genomic
prediction of forage yield traits measured under two
management regimes. Under conservation management,
first cut silage is the trait of greatest importance,
and we obtained a mean predictive ability of 0.22.
Under simulated grazing management, we determined
the predictive abilities for spring yield, summer yield,
autumn yield, annual yield, and value of annual forage
yields. The mean predictive abilities ranged from 0.03 for
summer yield to 0.28 for spring yield (Fig. 4).

Table 1. Summary of training population phenotypic data. Silage was measured under separate conservation management and all other

traits under a simulated grazing management.

Trait o’ Mean [kg plot!] Min. [kg plot] Max. [kg plot!] h?

Spring yield 1.81 8.21 4.04 13.56 0.33
Summer yield 3.69 31.71 26.11 40.68 0.26
Autumn yield 2.37 13.91 4.12 17.56 0.44
Annual yield 11.98 53.84 43.65 70.15 0.53
Value of annual forage yield 0.11 4.12 3.23 5.51 0.54
Silage yield 9.70 31.67 11.87 45.20 0.22
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Fig. 2. Correlation of forage yield traits for half-sib families measured in a simulated grazing regime (spring, summer, autumn, and
annual forage yield, and value of annual forage yield) and a conservation regime (first cut silage). Scatter plots and the Pearson

correlation coefficients.

Fig. 3. Principle component analysis of genotype data on the maternal plants of the 109 half-sib families that made up the training

population.

Empirical assessment of genomic selection for forage
yield: A cycle of among-family selection based on field
evaluations and within-family selection using genomics
was carried out. This was followed by two further rounds
of genomic selection. New synthetic populations were
produced in field isolations using parents selected based on
GEBVs. Three rounds of genomic selection were carried
out over three years. These new synthetic populations

(C; SYN-1, C; SYN-1, C; SYN-1, C; SYN-2, and
C, SYN-2) were established in a field trial alongside
starting population (C,) and evaluated for seasonal forage
yield over two years (Table 2).

Estimated marginal means for all traits and SYN-Is
and SYN-2s are shown in Fig. 5. In the case of value
of annual forage yield, which was the trait selected for,
there was a statistically significant difference between
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Fig. 4. Predictive ability (PA) measured as Pearson correlation between predicted and field evaluations. The mean, inference around
the mean, smoothed density curve, and data points are shown. Genomic selection models developed using ridge regression BLUP and
evaluated using Monte-Carlo cross validation (1 000 iterations) with 80:20 split between training and test set. The traits evaluated are
spring, summer, autumn, and annual yield in a simulated grazing management regime, first cut silage yield, and the value of annual

forage yield.

Table 2. Seasonal forage yield [t ha'!] data across years. Means of four plots shown along with standard errors.

Co Ci C, G

Kintyre SYN-1 SYN-2 SYN-1 SYN-2 SYN-1
2021
Spring yield 10.34 £0.32 11.33 £ 0.50 11.89 +£0.47 12.00 £0.28 12.22 +0.51 12.00 £ 0.68
Summer yield 36.89 +0.84 36.78 £ 0.58 37.11 +£0.30 38.00 +0.63 35.78 £0.62 36.33 +0.59
Autumn yield 12.22+0.43 12.22 £ 0.08 12.44 +0.37 13.56 £ 0.21 12.78 £ 0.47 13.00 £ 0.26
Annual yield 59.44 +1.47 60.22 +1.08 61.33+£0.71 63.67 +0.86 60.67 £ 1.36 61.33+1.46
Annual yield [€/plot] 4.03+0.11 4.16 £0.10 427+0.10 4.45+£0.07 431+0.13 432+0.14
First cut silage 51.33+0.73 54.56 +1.78 52.78 £ 1.14 54.44 + 0.53 55.00+1.02 54.67 +1.02
2022
Spring yield 10.27 £0.37 10.43 £0.56 10.99 +£0.29 11.22+£0.26 10.84 £ 0.36 10.73 £0.37
Summer yield 31.78 £1.12 31.78 £ 0.69 32.00£0.90 33.00 +0.09 31.11+0.58 31.89+1.03
Autumn yield 6.51 £0.36 6.69 +0.27 6.82+0.21 7.01+£0.21 6.67+0.21 6.53+0.41
Annual yield 48.56 £1.62 48.89 £0.77 49.78 £ 1.11 51.22+0.98 48.67£1.03 49.11 +1.38
Annual yield [€/plot] 3.27+£0.10 3.31+0.08 3.41+£0.07 3.49+0.05 3.34+£0.08 3.34+0.08
First cut silage 3944 +1.21 39.44 +0.44 38.22+2.76 39.56+1.22 42.22+1.20 36.89 +1.60
SYN-1s of Cy and C, (Fig. 5). The gain from C; SYN-1 to Discussion

C, SYN-1 was greater than the gain from Cy SYN-1 to
C; SYN-1. SYN-2s were also developed from C, and
C, SYN-1s by random mating of SYN-1 plants. In the case
of C, the SYN-2 was higher than the SYN-1, and in
the case of C, the SYN-2 was lower than the SYN-1 for
value of annual forage yield.

There was distinction between selection candidates
in C; due to genotyping within five half-sib families
(Fig. 1 Suppl.). Levels of relatedness between selection
candidates (C,, C,, C;) and training population (Co)
dropped as we moved through selection cycles (Fig. 2

Suppl.).
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Given the importance of perennial ryegrass in pastoral
agricultural systems (Wilkins 1991), it is essential to
accelerate genetic progress in the species for key traits
such as forage yield. Studies to quantify the genetic gain
in perennial ryegrass have highlighted modest gains in
dry-matter yield of ca. 0.3% per year (Sampoux ez al. 2011,
McDonagh et al. 2016). A lack of progress in improving
spring forage yield has also been highlighted (Sampoux
et al. 2011), a key focus in grazing systems where forage
supply in spring typically falls short of demand.

Genomic selection is a breeding tool that has the
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Fig. 5. Estimated marginal means (EMMs) for forage yield of starting population Kintyre (Co) and SYN-1 and SYN-2 after recurrent
rounds of genomic selection. 4 - spring forage yield [kg/plot]; B - summer forage yield [kg/plot]; C - autumn forage yield [kg/plot];
D - annual forage yield [kg/plot]; E - value of annual forage yield [€/plot]; F - first cut silage forage yield [kg/plot]. Gold bars are
confidence intervals for EMMs and orange arrows are for pairwise contrasts (when arrow from mean of one group overlaps with

another, the pairwise comparison is not significant at a of 0.05).

potential to accelerate genetic gain in forage species.
The greatest benefit comes from rapid cycles of recurrent
selection with genomics, where even modest predictive
accuracies can potentially lead to a tripling of genetic
gain (Annicchiarico et al. 2015). While such an approach
takes full advantage of genomics to shorten the generation
interval (and increase selection intensity), there is a risk
that predictive accuracy will degrade over cycles as
selection candidates become increasingly removed from
the training population. In fact, there have been many
studies demonstrating the importance of maintaining

a strong relationship between training population and
selection candidates (Goddard 2009, Speed and Balding
2015, Konkolewska et al. 2021). Empirical studies using
genomics for within-family selection in perennial ryegrass
have been reported (Faville et al. 2022), although there
have not been any empirical reports on using genomics
for rapid cycle recurrent genomic selection. However,
there are limited examples of empirical studies of rapid
cycle recurrent genomic selection in other species, and
encouraging results have been reported (Zhang et al.
2017, Veenstra et al. 2020, Dreisigacker et al. 2023).
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In this study, we implemented rapid cycle recurrent
genomic selection in a perennial ryegrass half-sib family
population to determine the response to genomic selection
and evaluate the genetic gain.

The data for model training were collected across
separate simulated grazing and conservation management
regime, as it is known that perennial ryegrass cultivars
perform differently under different management conditions
(Gilliland and Mann 2000, McEvoy et al. 2010, McDonagh
et al. 2016). This was seen here with little overlap in
top-performing families identified in each management
and low correlations between first cut silage and seasonal
yield traits measured in simulated grazing management.
This is likely due to a high degree of genetic independence
between the yield during reproductive growth, which
primarily contributes to silage yield, and the yield during
vegetative growth, which primarily contributes to grazing
yield (Wilkins and Humphreys 2003). The heritability
based on a half-sib family mean basis ranged between
0.22 and 0.54, and these are in line with location specific
heritabilities for forage yield traits (F¢ et al. 2015b).

Genomic prediction models were initially developed
for all forage yield traits using genotypes of maternal
plants and phenotypes collected from the half-sib progeny.
This focused on the additive genetic variation, of relevance
in predicting parental breeding values during synthetic
cultivar development. The predictive ability, as assessed
via cross-validation within the training population ranged
from 0.03 to 0.28, which is in line with predictions for
forage yield traits from other studies of perennial ryegrass
(Lin et al. 2016, Faville et al. 2018, Guo et al. 2018,
Pembleton et al. 2018, Arojju et al. 2020), alfalfa
(Annicchiarico et al. 2015, 2022), and switchgrass
(Ramstein et al. 2016).

The focus of this study was on rapid cycle recurrent
genomic selection for value of annual forage yield, where
the mean predictive ability was estimated at 0.23, and
results showed that we achieved genetic gain for this trait
up to C2. Focussing on SYN-1s, the greatest difference
was between C, and C,, and this difference was statistically
significant. The genetic gains from C, to C,, as evaluated
on their SYN-1s, were 12.6% for spring yield, 3.5% for
summer yield, 10.2% for autumn yield, and 8.9% for value
of annual forage yield. The gains for spring, summer, and
autumn yield reflect the emphasis placed on each of these
traits when calculating the value of annual forage yield in
the development of GS models. It is important to highlight
that the genetic gain from C, to C, is compounded by
among-family selection based on field data, and at least
part of the gain from C, to C, resulted from selecting
plants from the best half-sib families. However, other
studies have demonstrated the advantages of within-
family genomic selection over random selection from
remnant seeds (Faville ef al. 2022). The genetic gain from
C; to C, was not compounded by among-family selection,
and gains were 6.7% for spring yield, 3.8% for summer
yield, 9.2% for autumn yield, and 6.4% for value of annual
forage yield. These gains from C; to C, were greater than
the gains from C, to C;, where gains were 5.5%, -0.2%,
0.9%, and 2.4% for spring yield, summer yield, autumn

84

yield, and the value of annual forage yield, respectively.

A positive response to selection was not observed in
the SYN-1s when moving from C, to C;. While rapid cycle
recurrent genomic selection maximizes the advantages of
genomic selection, it requires that the predictive ability of
models be maintained over multiple generations. It can be
seen here that after two rounds of GS, and as we move away
from the population upon which the model was developed,
we lost predictive ability. This can be seen in the Genomic
Relationship Matrix (GRM), where the relationships
between C; and C, are lower than those between C, and C,,.
However, further cycles of GS would need to be completed
to confirm this trend. The SYN-2s were developed from
random mating within each SYN-1 and an increase in value
of annual forage yield was observed from C, to C; SYN-2,
but no increase from C; SYN-2 to C; SYN-2. On average,
SYN-1s are expected to outperform SYN-2s in both
diploids and tetraploids (Reheul ef al. 2003) but this was
not the case here where the C; SYN-2 was higher yielding
than C, SYN-1, albeit the difference was not significant.

In the first round of genomic selection, we did not
exclusively select on GEBVs but rather ranked GEBVs
within each of the five HSFs selected based on field
evaluations. This was done to avoid restricting genetic
diversity during the initial round of selection. After this
point, selection was based purely on a plants GEBV
ranking. It is unclear whether gains equivalent to
the C, SYN-1 would have been achieved in C; if we
had selected parents based purely on GEBV ranking in
the initial round of genomic selection and without
selecting an equal number of parents from each of the top
five HSFs. A clear advantage of the above is that it saves
a cycle of genomic selection and associated time and costs.
A scenario could be envisioned where selecting the best
plants within the best families is used to identify parents
for the next round of selection, but where selection is
based solely on GEBVs when producing new synthetics
during product development. It is also possible that
an additional round of GS (C, to C,) offers the potential to
further increase genetic gain during product development
and warrants further research to validate in both HSF and
full-sib family breeding scenarios.

The relative value of yield at different times of
the year was captured using the pasture profit index (PPI)
(McEvoy et al. 2010, 2011, 2014), which was developed
in Ireland to provide economic value to cultivars. PPI is
primarily aimed at helping farmers select new cultivars
when reseeding pastures, but can also aid breeders in
developing selection indexes to support the development
of new cultivars for Irish production systems. Future
implementations may benefit from treating seasonal yield
as separate traits and incorporating a multi-trait selection
index such as the Smith-Hazel index (Smith 1936, Hazel
1943) or base index (Williams 1962), ideally expanding
traits beyond forage yield to other key traits such as forage
quality. At least in the case of an Irish forage grazing
system, the relative weightings required for such an index
already exist (McEvoy ef al. 2011).

Opportunities exist in perennial ryegrass to accelerate
genetic gain with GS for complex traits such as forage



RAPID CYCLE RECURRENT GENOMIC SELECTION FOR FORAGE YIELD

yield. There are different approaches to implementing GS
in forage breeding that enable breeders to take advantage
of its benefits. One approach is rapid cycle recurrent
genomic selection, and although it has the greatest
potential to fully exploit GS, this approach comes with
the greatest risk. Our study showed that rapid cycle
recurrent genomic selection yielded a positive response
to selection for only two successive rounds of GS, before
declining in the third round as selection candidates became
more distant from the training population. Encouragingly,
the greatest gains were from C, to C,, where genetic gain
was not compounded by among-family selection based
on field evaluations. This demonstrates that GS can be
an effective tool in perennial ryegrass breeding, and further
empirical studies are required to optimize GS strategies for
population improvement and product development in both
HSF and FSF breeding schemes.
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