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Introduction

Perennial ryegrass (Lolium perenne L.) is the most important 
forage grass species in Ireland and temperate regions of 
the world. Yield is an important trait for perennial ryegrass 
to provide natural low-cost feed for ruminants (Wilkins 
and Humphreys 2003, Humphreys 2005). High-yielding 
cultivars produce more herbage, making them a relatively 
cheap and high-quality feed for animals. However,  
in a typical grazing system, there is excess grass growth 

during the summer months and a growth deficit in spring 
and autumn relative to animal demand. Surplus yields 
from summer are typically harvested and stored as silage 
to compensate for feed deficits in spring and autumn. 
Silage production is an expensive process that decreases 
the overall profitability of farms (O’Kiely and Flynn 
1987). Developing cultivars with increased yield in spring 
and autumn could potentially increase the overall grazing 
season and decrease supplemental feed costs (Wilkins and 
Humphreys 2003).
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Abstract

Opportunities exist to accelerate genetic gain in forage breeding using genome-wide selection approaches. In this study, 
we evaluated rapid cycle recurrent genomic selection (GS) as a means of improving genetic gain for value of annual 
forage yield. A small population of tetraploid half-sib families was evaluated for seasonal forage yield over two years, and 
the maternal parent plants were genotyped and genomic prediction models developed. The GS model for value of annual 
forage yield had a predictive ability of 0.23. An initial round of among-family selection based on field evaluations and  
within-family selection using genomic estimated breeding values was performed. This was followed by two further 
GS cycles. New synthetics were produced after each round of selection and were established in a field trial alongside 
the starting population. A positive response to selection was observed in new synthetics after two successive rounds 
of rapid cycle recurrent genomic selection before declining in the third round. The genetic gain for the value of annual 
forage yield was 2.4% from C0 SYN-1 to C1 SYN-1 and 6.4% from C1 SYN-1 to C2 SYN-1. In the case of C0 to C1, 
genetic gain was compounded by among-family selection based on field evaluations. The implementation of rapid cycle 
recurrent genomic selection offers an opportunity to increase genetic gain; however, the predictive ability is likely to 
decay rapidly as selection candidates become more distant from the training population.
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McEvoy et al. (2011) developed a pasture profit index 
(PPI) to identify and rank cultivars for profitability at  
the farm level. PPI assigns economic values for key traits 
such as dry matter yield (spring, summer, and autumn 
yields), first and second cut silage yield, dry matter 
digestibility, and persistency. PPI was based on simulating 
a spring-calving dairy farm model over a period of  
12 months. Currently, perennial ryegrass cultivars produce 
on average 12.3 ± 5.5 t(DM) ha-1 yr-1 (Gilliland et al. 2021) 
under simulated grazing and there is a potential to increase 
forage yield further. However, the genetic gain for annual 
dry matter yield is approximately 0.3 to 0.5% per year 
(Wilkins and Humphreys 2003, McDonagh et al. 2016) 
and these rates of genetic improvement are significantly 
lower than in cereals, which can be 1.0 to 1.5% per year 
(Öfversten et al. 2004).

Genomic selection offers an approach for accelerating 
genetic gain during breeding (Meuwissen et al. 2001) where 
molecular marker data is utilised to estimate breeding 
values. Genomic prediction has revolutionized animal 
breeding and has been successfully applied (Meuwissen 
et al. 2016); however, it is still in the early phase of 
plant breeding. Previous studies have demonstrated  
the potential of genomic prediction for diploid perennial 
ryegrass populations (Fè et al. 2015a,b; Lin et al. 2016, 
Byrne et al. 2017, Faville et al. 2018, Arojju et al. 2018, 
2020; Esfandyari et al. 2020). However, there are limited 
empirical studies on genomic selection (Faville et al. 2022) 
and none have evaluated rapid cycle recurrent genomic 
selection in perennial ryegrass. 

In this study, we empirically evaluated rapid cycle 
recurrent genomic selection by implementing three 
recurrent cycles of genomic selection (GS) to improve 
the value of annual forage yield. New synthetics produced 
after each round of GS were evaluated in a field trial along 
with the starting population to determine the response to 
genomic selection.

Materials and methods

Training population development and trial design:  
The tetraploid population used in this study was developed 

from a commercial cultivar, which has been on the Irish 
recommended list since 2012. The cultivar Kintyre was 
initially developed by intercrossing 75 plants from each of 
four full-sib families. A set of 120 plants from the cultivar 
was clonally propagated and each clone planted out in one 
of seven blocks in a polycross nursery and allowed to cross 
pollinate. Seeds from matching maternal parents were 
harvested and bulked, producing half-sib families. Out 
of the original 120 half-sib families (HSFs), 109 families 
produced enough seed for a replicated field trial with two 
managements. In each management regime, HSFs were 
planted out in one of seven experimental blocks, where 
each block contained two replicates of 16 test families and 
two control cultivars. The two control cultivars (Kintyre 
and Abergain) were consistent across experimental blocks. 
Plots were established in 2014 and data was collected in 
2015 and 2016 at Oak Park, Carlow, Ireland. Yield was 
measured as fresh mass under two management schemes, 
1) simulated grazing management with seven harvest 
cuts per year (each cut every four weeks from March to 
October) and 2) conservation management with silage cuts. 
Each plot size was 6 × 1.5 m and forage was harvested to 
approximately 4 cm above ground using a Haldrup forage 
plot harvester. 

Phenotyping and data analysis: In the simulated grazing 
management, yield data were collected from at least seven 
harvest cuts in each of two years. Total yield in each year 
was the sum of all seven harvests. We estimated the value 
of the annual forage yield using weightings from the 
PPI (McEvoy et al. 2011). Cuts in the simulated grazing 
management were divided into spring yield (cuts 1 and 2), 
summer yield (cuts 3, 4, and 5), and autumn yield (cuts  
6 and 7). Yields in spring, summer, and autumn were 
multiplied by the weightings 0.16, 0.04, and 0.11, 
respectively (McEvoy et al. 2014) to ensure yield in 
spring was valued higher than forage yield in autumn, 
and forage yield in autumn was valued higher than forage 
yield in summer. The value of annual forage yield was then 
calculated by summing spring, summer, and autumn yield. 
Under conservation management, we focussed on yield data 
of the first cut silage. In total five traits from the simulated 
grazing management (total annual yield, value of annual 

Harvest dates for forage yield measurements under conservation and simulated grazing managements.When calculating the value of 
annual forage yield, a weighting was applied to each harvest depending on when the harvest took place. The weighting assigned to each 
cut is shown in the table.

2015 2016
Simulated grazing management Weighting

Harvest 1 09/04 to 10/04 14/03 to 15/03 0.16
Harvest 2 29/04 to 01/05 18/04 to 19/04 0.16
Harvest 3 21/05 to 22/05 12/05 to 13/05 0.04
Harvest 4 10/06 to 19/06 07/06 to 08/06 0.04
Harvest 5 15/07 to 17/07 04/07 to 05/07 0.04
Harvest 6 10/08 to 12/08 04/08 to 05/08 0.11
Harvest 7 07/09 to 08/09 14/09 to 21/09 0.11
Conservation management
First cut silage 21/05 to 22/05 12/05 to 13/05 na
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forage yield, spring, summer and autumn yields) and one 
trait from the conservation management (first silage cut) 
were used for further analysis. Phenotypic analysis was 
carried out in two stages. In stage one, the mean of controls 
in each experimental block and mean of controls across all 
seven experimental blocks were calculated. An adjustment 
value was calculated for each experimental block by 
subtracting the mean of controls across all blocks from  
the mean of controls within a block. This adjustment 
value for each experimental block was then used to adjust 
values for each test family within that experimental block.  
In stage two, adjusted values were used to fit a mixed 
model with family as a random effect, and year as fixed 
effect, to obtain best linear unbiased predictors (BLUPs) 
for all six traits (calculated in lme4 according to Bates  
et al. 2015). The heritabilities on a half-sib family mean 
basis were calculated as follows:
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2
fσ  is half-sib family variance, 2

fyσ  is the half-sib 
family by year variance, 2

resσ  is the residual variance, y is 
the number of years, and r is number of replicates.

Genotyping and variant calling: DNA was extracted 
from leaf samples of maternal plants using a standard cetyl 
trimethyl ammonium bromide (CTAB) method (Doyle 
1991). A genotyping by sequencing (GBS) approach based 
on genome complexity reduction with restriction enzymes 
(Elshire et al. 2011) was used for library preparation 
and was carried out as a service by LGC Genomics 
(Berlin, Germany). Sequence reads were quality filtered, 
demultiplexed and aligned to the reference perennial 
ryegrass genome (Byrne et al. 2015) available at the 
time. All GBS data has been submitted to the NCBI SRA 
under BioProject PRJNA1013016. After demultiplexing, 
genotype calling was done according to Li et al. 
(2014) where no distinction was made among the three 
heterozygous states. Briefly, for each SNP a minimum of 
11 reads were required to call a homozygote (i.e., AAAA). 
If fewer than 11 reads were present, the genotype was 
considered as missing to avoid misclassifying a triplex 
heterozygote (i.e., AAAT) as homozygous. To call a SNP 
heterozygous, two reads per allele were required and  
the proportion of reads supporting the less frequent allele 
needed to be greater than 0.10, otherwise it was considered 
as a missing genotype. The data set was filtered to remove 
SNPs with a minor allele frequency less than 5% and more 
than 50% of the data missing. The final SNP set consisted 
of 45 569 genome wide markers.

Genomic prediction models and cross validations: 
Genomic prediction was carried out using the SNP data 
set, and the A.mat function of the rrBLUP package 
(Endelman 2011) was used to impute missing data.  
We used ridge regression BLUP (rrBLUP) with the mixed 
solve function of rrBLUP package to develop genomic 
prediction models for each trait described above. Monte 

Carlo cross-validation (1 000 iterations) was carried out 
with an 80:20 split between training and test set. Predictive 
ability was measured as the Pearson correlation coefficient 
of genomic estimated values and trait BLUPs determined 
from field evaluations averaged over 1  000 iterations.  
We assessed predictive ability for the following traits; 
spring yield, summer yield, autumn yield, annual forage 
yield, first cut silage, and value of annual forage yield.

Implementation of genomic selection for value of annual 
forage yield: In an initial round of within-family selection 
with genomics, seed from the top five HSFs for value of 
annual forage yield (one family with insufficient seed 
was replaced with next in line) were germinated and 240 
seedlings from each family were selected for genotyping 
(Fig. 1). Genotyping and data analysis was carried out as 
described for the training population. Genomic estimated 
breeding values (GEBVs) were calculated for each plant 
using models developed for the value of annual forage 
yield on the complete training population. The GEBVs 
were ranked within each HSF and the top thirty seedlings 
from each family were selected and established in a field 
isolation in January and allowed to cross-pollinate (oats 
without application of a plant growth regulator was used 
as a pollen barrier). Seed (C1 SYN-1) was harvested from 
the isolation in August and seed germinated to establish 
1  008 seedlings for genotyping. Again, GEBVs for  
the value of annual forage yield were determined for each 
seedling, ranked, and the top 100 candidates established in 
a field isolation, allowed to cross-pollinate, and C2 SYN-1 
seed harvested. A third round of genomic selection 
was performed with 1  000 seedlings from the previous  
C2 SYN-1 and again the top 100 candidates were 
established in a field isolation, allowed to cross-pollinate, 
and C3 SYN-1 seed harvested.

Evaluation of new synthetic populations: In addition to 
the three SYN-1s produced (C1 SYN-1, C2 SYN-1, and 
C3 SYN-1), SYN-2s were also developed from C1 SYN-1 
and C2 SYN-1 seed. C3 SYN-2 seed was not available 
when starting this evaluation trial. SYN-2 seed was 
produced through random mating of SYN-1 seed in field 
isolations. The synthetic populations were established 
in an experimental field plot trial (plot size 6 × 1.5 m) 
alongside the starting population of Kintyre (C0). The trial 
was established as a randomized complete block design 
with four blocks. The plots were evaluated for forage 
yield (measured as fresh mass) in a simulated grazing 
management over two years following an establishment 
year. Each trait was analysed using a linear regression 
model in R (R Core Team 2013) with population ID, year, 
and block as model parameters. Estimates of the marginal 
means were calculated with the emmeans package (Lenth 
et al. 2023).

Results

Phenotyping a training population: The population used 
for training the genomic selection models was evaluated 
in two management regimes (conservation, simulated 
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grazing), and the descriptive statistics are presented 
in Table 1. The heritability ranged between 0.22 for  
the first cut silage and 0.54 for value of annual forage yield  
(Table 1). 

The correlation between annual yield and value of 
annual forage yield was high (Fig. 2), and heritability 
was similar for both traits (Table 1). The correlation 
between the first cut silage measured under conservation 
management and forage yield traits measured under 
simulated grazing management was low (Fig. 2).  
The highest correlation (0.19) was with spring forage yield 
and the lowest (0.09) with autumn forage yield, likely 
reflecting a greater difference in timing between first cut 
silage and autumn yields in comparison to spring yield. 
Furthermore, Kendall rank correlations between first cut 
silage and simulated grazing yields were all below 0.12. 
Accuracy of genomic selection models for forage yield: 
A final SNP set, consisting of 45 569 SNPs, was identified 

in the training population. There was no clear clustering 
of maternal plants, as observed using principal component 
analysis (PCA) of the marker data (Fig. 3). The lack of 
structure in the population is not unexpected considering 
that it is composed of plants taken from a cultivar that was 
originally developed by intercrossing 75 plants from each 
of four full-sib families.

In this study, we first evaluated the accuracy of genomic 
prediction of forage yield traits measured under two 
management regimes. Under conservation management, 
first cut silage is the trait of greatest importance,  
and we obtained a mean predictive ability of 0.22. 
Under simulated grazing management, we determined  
the predictive abilities for spring yield, summer yield, 
autumn yield, annual yield, and value of annual forage 
yields. The mean predictive abilities ranged from 0.03 for 
summer yield to 0.28 for spring yield (Fig. 4).

Fig. 1. Overview of reference population development and rapid cycle recurrent genomic selection implemented in this study.  
Genotyping was carried out using genotyping-by-sequencing based on complexity reduction with restriction enzymes. GS - genomic 
selection, WFgs - within-family genomic selection. Created with BioRender.com.

Table 1. Summary of training population phenotypic data. Silage was measured under separate conservation management and all other 
traits under a simulated grazing management. 

Trait σ2 Mean [kg plot-1] Min. [kg plot-1] Max. [kg plot-1] h2

Spring yield   1.81   8.21   4.04 13.56 0.33
Summer yield   3.69 31.71 26.11 40.68 0.26
Autumn yield   2.37 13.91   4.12 17.56 0.44
Annual yield 11.98 53.84 43.65 70.15 0.53
Value of annual forage yield   0.11   4.12   3.23   5.51 0.54
Silage yield   9.70 31.67 11.87 45.20 0.22
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Empirical assessment of genomic selection for forage 
yield: A cycle of among-family selection based on field 
evaluations and within-family selection using genomics 
was carried out. This was followed by two further rounds 
of genomic selection. New synthetic populations were 
produced in field isolations using parents selected based on 
GEBVs. Three rounds of genomic selection were carried 
out over three years. These new synthetic populations  

(C1 SYN-1, C2 SYN-1, C3 SYN-1, C1 SYN-2, and  
C2 SYN-2) were established in a field trial alongside 
starting population (C0) and evaluated for seasonal forage 
yield over two years (Table 2).

Estimated marginal means for all traits and SYN-1s 
and SYN-2s are shown in Fig. 5. In the case of value 
of annual forage yield, which was the trait selected for, 
there was a statistically significant difference between 

Fig. 2. Correlation of forage yield traits for half-sib families measured in a simulated grazing regime (spring, summer, autumn, and 
annual forage yield, and value of annual forage yield) and a conservation regime (first cut silage). Scatter plots and the Pearson 
correlation coefficients.

Fig. 3. Principle component analysis of genotype data on the maternal plants of the 109 half-sib families that made up the training 
population.
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SYN-1s of C0 and C2 (Fig. 5). The gain from C1 SYN-1 to  
C2 SYN-1 was greater than the gain from C0 SYN-1 to 
C1 SYN-1. SYN-2s were also developed from C1 and  
C2 SYN-1s by random mating of SYN-1 plants. In the case 
of C1 the SYN-2 was higher than the SYN-1, and in  
the case of C2 the SYN-2 was lower than the SYN-1 for 
value of annual forage yield. 

There was distinction between selection candidates  
in C1 due to genotyping within five half-sib families  
(Fig. 1 Suppl.). Levels of relatedness between selection 
candidates (C1, C2, C3) and training population (C0) 
dropped as we moved through selection cycles (Fig. 2 
Suppl.).

Discussion

Given the importance of perennial ryegrass in pastoral 
agricultural systems (Wilkins 1991), it is essential to 
accelerate genetic progress in the species for key traits 
such as forage yield. Studies to quantify the genetic gain  
in perennial ryegrass have highlighted modest gains in  
dry-matter yield of ca. 0.3% per year (Sampoux et al. 2011, 
McDonagh et al. 2016). A lack of progress in improving 
spring forage yield has also been highlighted (Sampoux 
et al. 2011), a key focus in grazing systems where forage 
supply in spring typically falls short of demand.

Genomic selection is a breeding tool that has the 

Fig. 4. Predictive ability (PA) measured as Pearson correlation between predicted and field evaluations. The mean, inference around 
the mean, smoothed density curve, and data points are shown. Genomic selection models developed using ridge regression BLUP and 
evaluated using Monte-Carlo cross validation (1 000 iterations) with 80:20 split between training and test set. The traits evaluated are 
spring, summer, autumn, and annual yield in a simulated grazing management regime, first cut silage yield, and the value of annual 
forage yield.
Table 2. Seasonal forage yield [t ha-1] data across years. Means of four plots shown along with standard errors.

C0 C1 C2 C3

Kintyre SYN-1 SYN-2 SYN-1 SYN-2 SYN-1

2021
Spring yield 10.34 ± 0.32 11.33 ± 0.50 11.89 ± 0.47 12.00 ± 0.28 12.22 ± 0.51 12.00 ± 0.68
Summer yield 36.89 ± 0.84 36.78 ± 0.58 37.11 ± 0.30 38.00 ± 0.63 35.78 ± 0.62 36.33 ± 0.59
Autumn yield 12.22 ± 0.43 12.22 ± 0.08 12.44 ± 0.37 13.56 ± 0.21 12.78 ± 0.47 13.00 ± 0.26
Annual yield 59.44 ± 1.47 60.22 ± 1.08 61.33 ± 0.71 63.67 ± 0.86 60.67 ± 1.36 61.33 ± 1.46
Annual yield [€/plot]   4.03 ± 0.11   4.16 ± 0.10   4.27 ± 0.10   4.45 ± 0.07   4.31 ± 0.13   4.32 ± 0.14
First cut silage 51.33 ± 0.73 54.56 ± 1.78 52.78 ± 1.14 54.44 ± 0.53 55.00 ± 1.02 54.67 ± 1.02
2022
Spring yield 10.27 ± 0.37 10.43 ± 0.56 10.99 ± 0.29 11.22 ± 0.26 10.84 ± 0.36 10.73 ± 0.37
Summer yield 31.78 ± 1.12 31.78 ± 0.69 32.00 ± 0.90 33.00 ± 0.09 31.11 ± 0.58 31.89 ± 1.03
Autumn yield   6.51 ± 0.36   6.69 ± 0.27   6.82 ± 0.21   7.01 ± 0.21   6.67 ± 0.21   6.53 ± 0.41
Annual yield 48.56 ± 1.62 48.89 ± 0.77 49.78 ± 1.11 51.22 ± 0.98 48.67 ± 1.03 49.11 ± 1.38
Annual yield [€/plot]   3.27 ± 0.10   3.31 ± 0.08   3.41 ± 0.07   3.49 ± 0.05   3.34 ± 0.08   3.34 ± 0.08
First cut silage 39.44 ± 1.21 39.44 ± 0.44 38.22 ± 2.76 39.56 ± 1.22 42.22 ± 1.20 36.89 ± 1.60
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potential to accelerate genetic gain in forage species. 
The greatest benefit comes from rapid cycles of recurrent 
selection with genomics, where even modest predictive 
accuracies can potentially lead to a tripling of genetic 
gain (Annicchiarico et al. 2015). While such an approach 
takes full advantage of genomics to shorten the generation 
interval (and increase selection intensity), there is a risk 
that predictive accuracy will degrade over cycles as 
selection candidates become increasingly removed from 
the training population. In fact, there have been many 
studies demonstrating the importance of maintaining 

a strong relationship between training population and 
selection candidates (Goddard 2009, Speed and Balding 
2015, Konkolewska et al. 2021). Empirical studies using 
genomics for within-family selection in perennial ryegrass 
have been reported (Faville et al. 2022), although there 
have not been any empirical reports on using genomics 
for rapid cycle recurrent genomic selection. However, 
there are limited examples of empirical studies of rapid 
cycle recurrent genomic selection in other species, and 
encouraging results have been reported (Zhang et al. 
2017, Veenstra et al. 2020, Dreisigacker et al. 2023).  

Fig. 5. Estimated marginal means (EMMs) for forage yield of starting population Kintyre (C0) and SYN-1 and SYN-2 after recurrent 
rounds of genomic selection. A - spring forage yield [kg/plot]; B - summer forage yield [kg/plot]; C - autumn forage yield [kg/plot];  
D - annual forage yield [kg/plot]; E - value of annual forage yield [€/plot]; F - first cut silage forage yield [kg/plot]. Gold bars are 
confidence intervals for EMMs and orange arrows are for pairwise contrasts (when arrow from mean of one group overlaps with 
another, the pairwise comparison is not significant at α of 0.05). 
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In this study, we implemented rapid cycle recurrent 
genomic selection in a perennial ryegrass half-sib family 
population to determine the response to genomic selection 
and evaluate the genetic gain.

The data for model training were collected across 
separate simulated grazing and conservation management 
regime, as it is known that perennial ryegrass cultivars 
perform differently under different management conditions 
(Gilliland and Mann 2000, McEvoy et al. 2010, McDonagh 
et al. 2016). This was seen here with little overlap in  
top-performing families identified in each management 
and low correlations between first cut silage and seasonal 
yield traits measured in simulated grazing management. 
This is likely due to a high degree of genetic independence 
between the yield during reproductive growth, which 
primarily contributes to silage yield, and the yield during 
vegetative growth, which primarily contributes to grazing 
yield (Wilkins and Humphreys 2003). The heritability 
based on a half-sib family mean basis ranged between 
0.22 and 0.54, and these are in line with location specific 
heritabilities for forage yield traits (Fè et al. 2015b).

Genomic prediction models were initially developed 
for all forage yield traits using genotypes of maternal 
plants and phenotypes collected from the half-sib progeny. 
This focused on the additive genetic variation, of relevance 
in predicting parental breeding values during synthetic 
cultivar development. The predictive ability, as assessed 
via cross-validation within the training population ranged 
from 0.03 to 0.28, which is in line with predictions for 
forage yield traits from other studies of perennial ryegrass  
(Lin et al. 2016, Faville et al. 2018, Guo et al. 2018, 
Pembleton et al. 2018, Arojju et al. 2020), alfalfa 
(Annicchiarico et al. 2015, 2022), and switchgrass 
(Ramstein et al. 2016).

The focus of this study was on rapid cycle recurrent 
genomic selection for value of annual forage yield, where 
the mean predictive ability was estimated at 0.23, and 
results showed that we achieved genetic gain for this trait 
up to C2. Focussing on SYN-1s, the greatest difference 
was between C0 and C2, and this difference was statistically 
significant. The genetic gains from C0 to C2, as evaluated 
on their SYN-1s, were 12.6% for spring yield, 3.5% for 
summer yield, 10.2% for autumn yield, and 8.9% for value 
of annual forage yield. The gains for spring, summer, and 
autumn yield reflect the emphasis placed on each of these 
traits when calculating the value of annual forage yield in 
the development of GS models. It is important to highlight 
that the genetic gain from C0 to C1 is compounded by 
among-family selection based on field data, and at least 
part of the gain from C0 to C1 resulted from selecting 
plants from the best half-sib families. However, other 
studies have demonstrated the advantages of within-
family genomic selection over random selection from 
remnant seeds (Faville et al. 2022). The genetic gain from 
C1 to C2 was not compounded by among-family selection, 
and gains were 6.7% for spring yield, 3.8% for summer 
yield, 9.2% for autumn yield, and 6.4% for value of annual 
forage yield. These gains from C1 to C2 were greater than 
the gains from C0 to C1, where gains were 5.5%, -0.2%, 
0.9%, and 2.4% for spring yield, summer yield, autumn 

yield, and the value of annual forage yield, respectively. 
A positive response to selection was not observed in 

the SYN-1s when moving from C2 to C3. While rapid cycle 
recurrent genomic selection maximizes the advantages of 
genomic selection, it requires that the predictive ability of 
models be maintained over multiple generations. It can be 
seen here that after two rounds of GS, and as we move away 
from the population upon which the model was developed, 
we lost predictive ability. This can be seen in the Genomic 
Relationship Matrix (GRM), where the relationships 
between C3 and C0 are lower than those between C2 and C0. 
However, further cycles of GS would need to be completed 
to confirm this trend. The SYN-2s were developed from 
random mating within each SYN-1 and an increase in value 
of annual forage yield was observed from C0 to C1 SYN-2, 
but no increase from C1 SYN-2 to C2 SYN-2. On average,  
SYN-1s are expected to outperform SYN-2s in both 
diploids and tetraploids (Reheul et al. 2003) but this was 
not the case here where the C1 SYN-2 was higher yielding 
than C2 SYN-1, albeit the difference was not significant. 

In the first round of genomic selection, we did not 
exclusively select on GEBVs but rather ranked GEBVs 
within each of the five HSFs selected based on field 
evaluations. This was done to avoid restricting genetic 
diversity during the initial round of selection. After this 
point, selection was based purely on a plants GEBV 
ranking. It is unclear whether gains equivalent to  
the C2 SYN-1 would have been achieved in C1 if we 
had selected parents based purely on GEBV ranking in  
the initial round of genomic selection and without 
selecting an equal number of parents from each of the top 
five HSFs. A clear advantage of the above is that it saves  
a cycle of genomic selection and associated time and costs. 
A scenario could be envisioned where selecting the best 
plants within the best families is used to identify parents 
for the next round of selection, but where selection is 
based solely on GEBVs when producing new synthetics 
during product development. It is also possible that  
an additional round of GS (C1 to C2) offers the potential to 
further increase genetic gain during product development 
and warrants further research to validate in both HSF and 
full-sib family breeding scenarios. 

The relative value of yield at different times of  
the year was captured using the pasture profit index (PPI) 
(McEvoy et al. 2010, 2011, 2014), which was developed 
in Ireland to provide economic value to cultivars. PPI is 
primarily aimed at helping farmers select new cultivars 
when reseeding pastures, but can also aid breeders in 
developing selection indexes to support the development 
of new cultivars for Irish production systems. Future 
implementations may benefit from treating seasonal yield 
as separate traits and incorporating a multi-trait selection 
index such as the Smith-Hazel index (Smith 1936, Hazel 
1943) or base index (Williams 1962), ideally expanding 
traits beyond forage yield to other key traits such as forage 
quality. At least in the case of an Irish forage grazing 
system, the relative weightings required for such an index 
already exist (McEvoy et al. 2011). 

Opportunities exist in perennial ryegrass to accelerate 
genetic gain with GS for complex traits such as forage 
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yield. There are different approaches to implementing GS 
in forage breeding that enable breeders to take advantage 
of its benefits. One approach is rapid cycle recurrent 
genomic selection, and although it has the greatest 
potential to fully exploit GS, this approach comes with  
the greatest risk. Our study showed that rapid cycle 
recurrent genomic selection yielded a positive response 
to selection for only two successive rounds of GS, before 
declining in the third round as selection candidates became 
more distant from the training population. Encouragingly, 
the greatest gains were from C1 to C2, where genetic gain 
was not compounded by among-family selection based 
on field evaluations. This demonstrates that GS can be  
an effective tool in perennial ryegrass breeding, and further 
empirical studies are required to optimize GS strategies for 
population improvement and product development in both 
HSF and FSF breeding schemes.
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