

Effects of $\text{NO}_3^-/\text{NH}_4^+$ ratios on growth, enzyme activity and nitrogen assimilation-related gene expression in *Toona sinensis* seedlings

Xiaopu SHI , Taotao SHAO, Beibei MA, Juan WANG, Mingqin FAN, and Hu ZHAO*

Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China

*Corresponding author: E-mail: zhaohu8196@sina.com

Abstract

Nitrogen is an essential nutrient for plants. Different nitrate (NO_3^-)/ammonium (NH_4^+) ratios have different effects on plant growth. However, the underlying mechanism in *Toona sinensis* remains unclear. Thus, we determined the effects of five different $\text{NO}_3^-/\text{NH}_4^+$ ratios (16/0, 12/4, 8/8, 4/12, and 0/16, denoted T1, T2, T3, T4, and T5, respectively) in nutrient media on *T. sinensis* seedling growth. When the nitrogen source was NH_4^+ alone (T5) or NO_3^- alone (T1), the soluble protein content in the leaves was the lowest. Additionally, the activities of key nitrogen assimilation-related enzymes, such as nitrate reductase (NR), glutamate synthase (GOGAT), and glutamine synthetase (GS), were altered by the $\text{NO}_3^-/\text{NH}_4^+$ ratio. Principal component analysis (PCA) revealed that the T2 treatment was optimal for *T. sinensis* seedling growth. The $\text{NO}_3^-/\text{NH}_4^+$ ratio regulates nitrogen assimilation at the transcription level, as under high NO_3^- conditions, the expressions of NR, GS, and *NADH-GOGAT* were high, and nitrate transporter (NRT) family members *NRT1*, *NRT1.1*, and *NRT1.7* played leading roles in nitrogen transport. However, under low NO_3^- conditions, the level of *NRT2.7* increased to ensure nutrient absorption. Our results provide a theoretical basis for understanding how different $\text{NO}_3^-/\text{NH}_4^+$ ratios affect *T. sinensis* growth.

Keywords: ammonium, ammonium transporter, Chinese toon, nitrate, nitrate transporter, nitrogen assimilation-related enzymes.

Introduction

Nitrogen is typically applied as a chemical fertilizer to support food production worldwide (Oldroyd and Leyser, 2020). There are various forms of nitrogen in soil, including organic soluble protein and amino acids, inorganic nitrate-nitrogen, ammonia-nitrogen, and urea. Plants absorb and utilize inorganic nitrogen from the soil, which exists in

two main types: nitrate (NO_3^-) and ammonium (NH_4^+). The ability of plants to absorb NO_3^- or NH_4^+ depends on their traits and the soil status. Under anaerobic conditions, nitrification is inhibited and denitrification occurs easily (Lin et al., 2009). Therefore, it is difficult to utilize NO_3^- -nitrogen under anaerobic conditions. In most aerobic soils, the major form of nitrogen is NO_3^- , whereas NH_4^+ is dominant in acidic and/or anaerobic soils (Maathuis, 2009;

Received 4 September 2024, last revision 31 January 2025, accepted 14 March 2025.

Abbreviations: AMT - ammonium transporter; CLC - chloride channel; Fd - ferredoxin; GOGAT - glutamate synthase; GS - glutamine synthetase; HAT - high affinity transport; LAT - low affinity transport; NADH - nicotinamide adenine dinucleotide; NiR - nitrite reductase; NLP - nodule inception (NIN)-like protein; NPF - nitrate transporter 1(NRT1)/peptide transporter (PTR) family; NR - nitrate reductase; NRT - nitrate transporter; PCA - principal component analysis; PTR - peptide transporter; RT-qPCR - reverse transcription real-time PCR; SLAC/SLAH - slowly activating anion channel.

Acknowledgements: This work was supported by grants from the Institution of Higher Education Outstanding Top Talent Cultivation Funding Project of the Anhui Bureau of Education (gxgwx2020049), the Key Natural Science Project of Anhui Bureau of Education (KJ2021A0683, and 2023AH050431), the Science and Technology Special Project of Municipal-University Cooperation (Fuyang Normal University-Fuyang City, nos. SXHZ202107, and SXHZ202105), Fuyang Normal University Start-up Foundation for Research (2020KYQD0013), the Key Natural Science Project of Fuyang Normal University (2021FSKJ09ZD), Biological and Medical Sciences of Applied Summit Nurturing Disciplines in Anhui Province (Anhui Education Secretary Department [2023]13), and the Innovation Program for College Students (no. 202210371029).

Conflict of interest: The authors declare that they have no conflict of interest.

Zhu et al., 2011). Generally, plants adapted to acidic soil tend to take up NH_4^+ , whereas plants adapted to alkaline soils and more aerobic conditions preferentially take up NO_3^- (Maathuis, 2009). The preference for NO_3^- and NH_4^+ varies among different plant species (Cruz et al., 2011; Hachiya and Sakakibara, 2017). The concentration of NH_4^+ in anaerobic paddy field soils used for rice cultivation is much higher than that of NO_3^- (Pratiwi et al., 2016; Gao et al., 2019). Therefore, rice is generally considered an NH_4^+ -tolerant crop. Studies have uncovered the mechanism of NH_4^+ tolerance in rice. A combined transcriptome and metabolomics analysis revealed that NH_4^+ tolerance in rice is related to rhizosphere pH, and that rice absorbs NO_3^- and releases OH^- , which alkalizes the rhizosphere and induces the accumulation of large amounts of insoluble iron on the root surface, resulting in iron deficiency and the inhibition of rice growth (Chen et al., 2018). NO_3^- inhibits the expression of NH_4^+ transporter (AMT) 1 through the NO_3^- transporter (NRT) 1.1B - nodule inception (NIN)-like protein 3 (NLP3) signal transduction pathway, reduces the absorption rate of NH_4^+ , and promotes the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle to increase the rate of NH_4^+ assimilation, thereby reducing the accumulation of NH_4^+ and enhancing the tolerance of rice to NH_4^+ (Yan et al., 2023). However, an increasing number of studies have shown that a combination of NO_3^- and NH_4^+ is more beneficial for plant growth than a single nitrogen source (Tabatabaei et al., 2008; Hu et al., 2015; Zhu et al., 2018). A 5/1 $\text{NH}_4^+/\text{NO}_3^-$ ratio promotes the growth and improves the quality of blueberries (Zhang et al., 2021). Additionally, the content of various nutrients was significantly greater in pepper fruits treated with an $\text{NH}_4^+/\text{NO}_3^-$ ratio of 25/75 than in the group treated with a 0/100 ratio (Zhang et al., 2019). Even in rice plants, which preferentially absorb NH_4^+ , the application of a small amount of NO_3^- can improve nitrogen utilization efficiency and increase yield (Guo et al., 2007). Therefore, the combination of NO_3^- and NH_4^+ and the $\text{NO}_3^-/\text{NH}_4^+$ ratio strongly affect plant growth.

NO_3^- is absorbed by plant roots through active transport; a small portion is stored in the roots while most is transported to the shoots (Xuan et al., 2017). First, NO_3^- is reduced and converted into nitrite (NO_2^-) by NR in the cytosol; then, NO_2^- is reduced and converted into NH_4^+ by nitrite reductase (NiR) in the plastids or chloroplasts; and finally, NH_4^+ can be assimilated (Wang et al., 2018). The GS/GOGAT cycle is the main pathway of NH_4^+ assimilation in plants and includes the GS and GOGAT, which are key enzymes in the catalytic generation of NH_4^+ . GS binds NH_4^+ to one molecule of glutamate to synthesize glutamine. GOGAT then catalyzes the reaction of glutamine and 2-oxyglutarate to form glutamate (Miflin and Habash 2002; Masclaux-Daubresse et al., 2010; Foyer et al., 2011). The glutamate and glutamine formed by NH_4^+ assimilation can be rapidly used to synthesize other compounds, such as amides, amino acids, urea compounds, amines, and peptides, which can be further incorporated into proteins, nucleic acids, and other macromolecular organic compounds.

Plants have evolved two types of GOGATs: ferredoxin (Fd)-GOGAT, which functions mainly in the leaves, and nicotinamide adenine dinucleotide (NADH)-GOGAT, which functions mainly in the roots and many other nonphotosynthetic tissues (Vanoni et al., 2005; Masclaux-Daubresse et al., 2010). Similar to GOGAT, cytosolic GS and chloroplastic GS are two forms of GS in different plant tissues (Bernard and Habash, 2009).

NRTs and AMTs are located in plant cells, and are protein carriers that specifically transport NO_3^- and NH_4^+ , respectively (Nacry et al., 2013). NRT protein families include the NRT1/peptide transporter (PTR) family (NPF), NRT2 family, chloride channel (CLC) family, and slowly activating anion channel (SLAC/SLAH) family (Krapp et al., 2014). Plants have two pathways for transporting NO_3^- that is absorbed from the soil by the roots: a low-affinity transport (LAT) system and a high-affinity transport (HAT) system. Members of the NRT1 family, except NRT1.1, are generally considered to belong to the LAT system, whereas NRT1.1 is considered a dual affinity NO_3^- transporter (Xing et al., 2023). The HAT system relies mainly on NRT2 (Williams and Miller, 2001). Moreover, AMTs can be divided into two classes: AMT1, which has been relatively extensively studied, and AMT2 (Zhu et al., 2021). Both NRTs and AMTs have distinct spatial distributions. *AtNRT1.1*, an extensively studied gene in *Arabidopsis*, that is predominantly localized in the root epidermis, and *AtNRT1.2* exhibits a certain expression pattern only in the root epidermis (Huang et al., 1999). *AtAMT1.1* and *AtAMT1.2* are also expressed mainly in *Arabidopsis* roots (Yuan et al., 2007).

Toona sinensis, also known as the Chinese toon, is a perennial deciduous tree of the *Meliaceae* family that is planted mostly in mountainous forests. Chinese toon buds are a widely popular vegetable because of their unique flavor. The Chinese toon requires large amounts of nutrients during growth, among which nitrogen plays crucial roles in its response to external environmental changes and development (Liu et al., 2022). In our previous study, appropriate nitrogen levels promoted the growth of Chinese toon (Zhao et al., 2024), but the effects of different nitrogen ratios on certain biological processes were unclear.

In this study, the effects of five different $\text{NO}_3^-/\text{NH}_4^+$ ratios on growth-related biological and physiological processes in the Chinese toon, such as seedling morphology, biomass, and activities of key enzymes and expression of key genes related to nitrogen assimilation, were investigated to reveal the physiological mechanism by which different $\text{NO}_3^-/\text{NH}_4^+$ ratios regulate Chinese toon growth. This study provides a theoretical reference for improving nitrogen fertilizer application and increasing nitrogen utilization efficiency during *T. sinensis* cultivation.

Materials and methods

Plant material and treatments: After germination, *Toona sinensis* Heiyouchun plants with a pair of cotyledons were selected and transplanted into pots containing nonnutritive

soil. The nutrient solution composition was calculated according to the Hoagland nutrient solution, except for the nitrogen supply, which differed. The experiment was conducted in pots, and potassium nitrate (KNO_3) and ammonium sulfate [$(\text{NH}_4)_2\text{SO}_4$] were used as the NO_3^- and NH_4^+ sources, respectively. Three total nitrogen concentrations were applied (0.32, 0.16, and 0.08 mM), and at each concentration, five $\text{NO}_3^-/\text{NH}_4^+$ ratios were used: T1 ($\text{NO}_3^-/\text{NH}_4^+ = 16/0$), T2 ($\text{NO}_3^-/\text{NH}_4^+ = 12/4$), T3 ($\text{NO}_3^-/\text{NH}_4^+ = 8/8$), T4 ($\text{NO}_3^-/\text{NH}_4^+ = 4/12$), and T5 ($\text{NO}_3^-/\text{NH}_4^+ = 0/16$) (Table 1). Each $\text{NO}_3^-/\text{NH}_4^+$ ratio treatment included three biological replicates, and each biological replicate consisted of five plants. To evaluate seedling morphology and measure seedling biomass, experiments were conducted under three total nitrogen concentrations (0.32, 0.16, and 0.08 mM) and five $\text{NO}_3^-/\text{NH}_4^+$ ratios (T1, T2, T3, T4, and T5). To measure chlorophyll accumulation, enzyme activities, and gene expression, experiments were conducted with 0.16 mM total nitrogen at five $\text{NO}_3^-/\text{NH}_4^+$ ratios (T1, T2, T3, T4, and T5). Ninety-day-old seedlings were collected, flash frozen in liquid nitrogen and then stored at -80°C.

Biomass: In accordance with the methods of Wang *et al.* (2022), biomass was determined in this study by measuring the dry mass. The roots, stems, and leaves were harvested and washed with deionized water, and the surface moisture was removed with filter paper. For dry mass measurements, the samples were placed in an oven and dried at 80°C for 48 h, until the sample weight was stable.

Chlorophyll content: The chlorophyll *a*, chlorophyll *b*, and total chlorophyll content was measured according to the methods of Witham *et al.* (1971). For these assessments, the leaves from five plants were cut and mixed to constitute a biological replicate. A total of 0.1 g of each leaf sample was extracted with 80% acetone using a mortar and pestle. The chlorophyll content was expressed as mg per g (mg g^{-1}) of fresh mass (FM). All the chlorophyll content measurements included three biological replicates.

Soluble protein and amino acids: The total soluble protein content was quantified by the Bradford (1976) method. For each biological replicate, a total of 1.0 g of tissue was homogenized with 10 mL of cold 0.1 M sodium phosphate buffer containing 2% (m/v) polyvinylpolypyrrolidone (PVPP) in a cold bath and centrifuged at 16 000 $\times g$ for 30 min at 4°C. The supernatant was collected and used

for the soluble protein assessment. The free amino acid content was determined using the ninhydrin chromogenic method, as described by Praxedes *et al.* (2006). Briefly, for each biological replicate, a total of 1.0 g of tissue was homogenized with 5 mL of 80% (v/v) aqueous ethanol. The sample was shaken and incubated at 80°C for 20 min and then centrifuged at 16 000 $\times g$ for 10 min; the pellets were extracted two more times with aqueous ethanol. All the free amino acid measurements included three biological replicates, and with each biological replicate consisting of five plants.

Enzyme activities: A total of 0.1 g of leaf or root sample was used to determine the activity of each enzyme. The activities of NR (EC 1.7.99.4), GOGAT (EC 1.4.7.1), and GS (EC 6.3.1.2) were determined according to the instructions of the corresponding kit (BC0080, BC0070 and BC0915, respectively; *Solarbio*, Beijing, China). Briefly, the samples were weighed and the corresponding kit solutions were added to extract the target enzymes, after which the samples were homogenized and centrifuged. The supernatant of each sample was collected for testing. All the enzyme activity measurements included three biological replicates, with each biological replicate consisting of five plants.

Reverse transcription real-time PCR (RT-qPCR) analysis: Total RNA was extracted from 100 mg of root or leaf sample using an *RNAprep Pure Plant Plus* kit (Tiangen, Beijing, China). Single cDNA was synthesized with *FastKing gDNA Dispelling RT SuperMix* (Tiangen) following the manufacturer's protocols. RT-qPCR analysis was performed with a *Bio-Rad CFX96* instrument (Hercules, USA) using *Super Real PreMix Plus (SYBR Green)* (Tiangen). The expressions of key genes involved in nitrogen assimilation, *NR*, *GS*, *Fd-GOGAT*, *NADH-GOGAT*, and those encoding NRT family members (*NRT1*, *NRT1.1*, *NRT1.7*, and *NRT2.7*) and AMT family members (*AMT1.1* and *AMT1.2*), were analyzed. These genes were selected on the basis of our transcriptome data. Detailed information about these genes and the primer sequences used are included in Table 1 Suppl. The housekeeping gene *Actin* was used as the reference for calculating the relative gene expressions according to the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen 2001) and are presented as the means \pm standard errors ($\text{M} \pm \text{SE}$) obtained from three biological replicates.

Table 1. Total nitrogen contents and $\text{NO}_3^-/\text{NH}_4^+$ ratios.

Total nitrogen [mM]	$\text{NO}_3^-/\text{NH}_4^+$	T1 16/0	T2 12/4	T3 8/8	T4 4/12	T5 0/16
0.32	KNO_3	0.32	0.24	0.16	0.02	0
	$(\text{NH}_4)_2\text{SO}_4$	0	0.02	0.08	0.16	0.16
0.16	KNO_3	0.16	0.12	0.08	0.02	0
	$(\text{NH}_4)_2\text{SO}_4$	0	0.02	0.04	0.06	0.08
0.08	KNO_3	0.08	0.06	0.04	0.02	0
	$(\text{NH}_4)_2\text{SO}_4$	0	0.01	0.02	0.03	0.04

Statistical analysis: Statistical analyses were performed using SPSS 19.0 software, and the means were examined by analysis of variance (ANOVA) using Duncan's test at a 95% confidence threshold ($P < 0.05$). A total of six (roots) or seven (leaves) variables, including biomass, soluble protein content, amino acid content, NR activity, GOGAT activity, GS activity, and total chlorophyll content (leaves only) were used for principal component analysis (PCA). Origin 2021 software was used for PCA and to create the bar charts.

Results

As the total nitrogen content varied (Fig. 1), so did the growth status of the Chinese toon seedlings (Fig. 1). Additionally, at the same total nitrogen content the growth parameters of the Chinese toon seedlings treated with different $\text{NO}_3^-/\text{NH}_4^+$ ratios (T1, T2, T3, T4, and T5) also differed (Fig. 1). Fig. 1 shows that when NO_3^- or NH_4^+ was the only nitrogen source, the Chinese toon exhibited relatively rapid growth. As shown in Table 2 Suppl., at the same $\text{NO}_3^-/\text{NH}_4^+$ ratio, the biomass of root, stem, and leaf biomass was the greatest at a total nitrogen content of 0.16 mM, followed by 0.08 and 0.32 mM total nitrogen. These results indicate that the growth of Chinese toon seedlings is affected not only by the total nitrogen content but also by the $\text{NO}_3^-/\text{NH}_4^+$ ratio. As a total nitrogen concentration of 0.16 mM was more suitable for Chinese toon seedling growth, this concentration was selected to study the effects of the $\text{NO}_3^-/\text{NH}_4^+$ ratio.

As shown in Fig. 2, the lowest chlorophyll *a* and total chlorophyll contents were observed in the T3

($\text{NO}_3^-/\text{NH}_4^+=8/8$) treatment, but no obvious difference in chlorophyll *b* was detected among the treatments. These findings indicate that equal contents of NO_3^- and NH_4^+ are not conducive to chlorophyll accumulation but applying different amounts of NO_3^- and NH_4^+ .

The total soluble protein content in Chinese toon plants varied along with the $\text{NO}_3^-/\text{NH}_4^+$ ratio. In the roots, the soluble protein content decreased gradually with decreasing concentrations of NO_3^- , and more soluble protein accumulated in the roots when only NO_3^- was present (T1, $\text{NO}_3^-/\text{NH}_4^+=16/0$) or when the $\text{NO}_3^-/\text{NH}_4^+$ ratio was 12/4 (Fig. 3A). The soluble protein content in the leaves increased with increasing NH_4^+ proportion, and the highest soluble protein content was detected in the T2 ($\text{NO}_3^-/\text{NH}_4^+=12/4$) treatment group (Fig. 3A).

The content of free amino acids increased with decreasing NO_3^- proportion in the roots, and the highest content was detected in the T2 ($\text{NO}_3^-/\text{NH}_4^+=12/4$) treatment group (Fig. 3B). This result suggests that under T2 ($\text{NO}_3^-/\text{NH}_4^+=12/4$), the roots have a strong ability to assimilate nitrogen into amino acids for further protein synthesis. The free amino acid content in the leaves was greatest when NH_4^+ was the only nitrogen source (T5, $\text{NO}_3^-/\text{NH}_4^+=0/16$).

NO_3^- absorbed by seedlings can be reduced to NO_2^- by NR, which catalyzes the rate-limiting step in nitrogen assimilation. The activity of NR in the roots of Chinese toon plants differed at various $\text{NO}_3^-/\text{NH}_4^+$ ratios, and the highest NR activity was observed in the T4 ($\text{NO}_3^-/\text{NH}_4^+=4/12$) treatment group. The T2 ($\text{NO}_3^-/\text{NH}_4^+=2/4$) treatment group presented the highest NR enzyme activity in the leaves, with was 2 - 3 times greater than those in the other treatment groups (Fig. 4A).

GOGAT and GS are involved in regulating ammonia assimilation in plants. The GOGAT activity in the roots was greatest in the T4 ($\text{NO}_3^-/\text{NH}_4^+=4/12$) treatment group, whereas the GOGAT activity in the leaves first increased but then decreased with increasing NH_4^+ proportion, peaking in the T3 ($\text{NO}_3^-/\text{NH}_4^+=8/8$) treatment group (Fig. 4B).

Fig. 1. Phenotypes of Chinese toon seedlings grown with 0.32 mM (A), 0.16 mM (B), and 0.08 mM (C) total nitrogen with different ratios of $\text{NO}_3^-/\text{NH}_4^+$ [16/0 (T1), 12/4 (T2), 8/8 (T3), 4/12 (T4), and 0/16 (T5)].

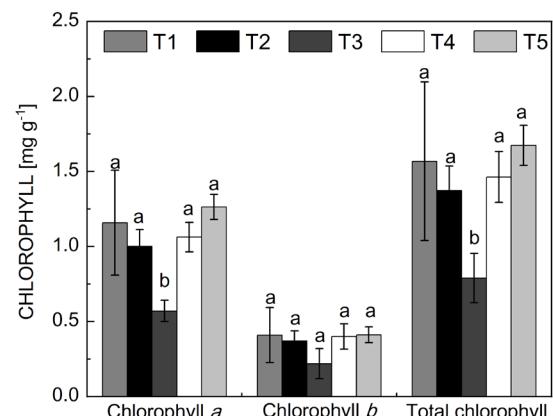


Fig. 2. Effects of different $\text{NO}_3^-/\text{NH}_4^+$ ratios [16/0 (T1), 12/4 (T2), 8/8 (T3), 4/12 (T4), and 0/16 (T5)] on chlorophyll content. Means \pm SEs of three biological replicates. Different letters indicate significant differences according to Duncan's test, $P < 0.05$.

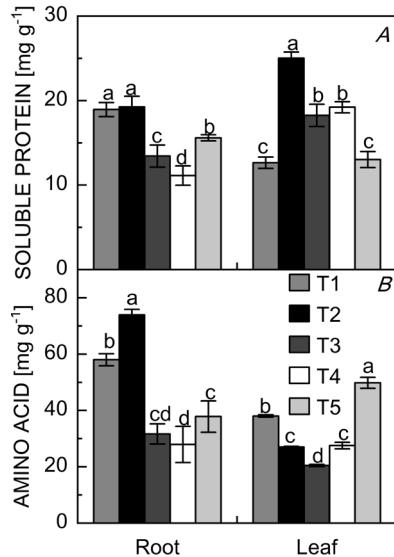


Fig. 3. Effects of different ratios of $\text{NO}_3^-/\text{NH}_4^+$ [16/0 (T1), 12/4 (T2), 8/8 (T3), 4/12 (T4), and 0/16 (T5)] on the total soluble protein content (A) and amino acid content (B). Means \pm SEs of three biological replicates. Different letters indicate significant differences according to Duncan's test, $P < 0.05$.

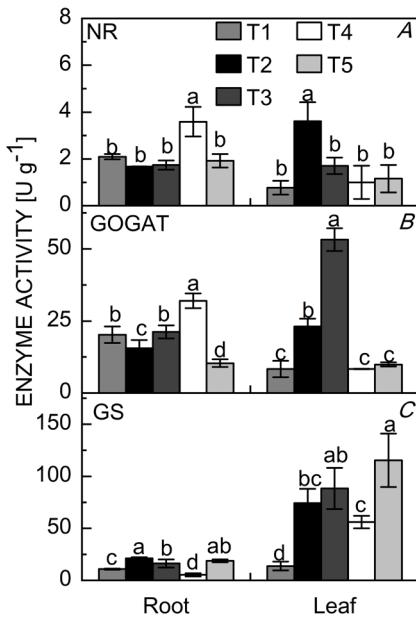


Fig. 4. Effects of different ratios of $\text{NO}_3^-/\text{NH}_4^+$ [16/0 (T1), 12/4 (T2), 8/8 (T3), 4/12 (T4), and 0/16 (T5)] on the enzyme activities of NR (A), GOGAT (B), and GS (C). Means \pm SEs of three biological replicates. Different letters indicate significant differences according to Duncan's test, $P < 0.05$.

The activity of GS in the roots was weaker than that in the leaves (Fig. 4C). The T5 ($\text{NO}_3^-/\text{NH}_4^+ = 0/16$) treatment group presented the highest GS enzyme activity in the leaves, and the GS activity in the leaves of *T. sinensis* seedlings was greater in the T2 and T3 groups than in the T4 group (Fig. 4C).

Two principal components (PCs) were extracted from a total of six (roots) or seven (leaves) variables,

including biomass, soluble protein content, amino acid content, NR activity, GOGAT activity, GS activity, and total chlorophyll content (leaves only) via PCA. The first two PCs captured 87.1% and 73.4% of the total observed variance in the roots and leaves, respectively (Fig. 5). In the roots, biomass, soluble protein content, and amino acid content contributed significantly to PC1 (Fig. 5A). In the leaves, biomass, soluble protein content, amino acid content, and NR activity contributed significantly to PC1 (Fig. 5B). For the both roots and the leaves, T2 treatment gave larger values of PC1, indicating that this treatment had the greatest positive effect on the growth of Chinese toon seedlings.

The effect of the $\text{NO}_3^-/\text{NH}_4^+$ ratio on Chinese toon seedlings was further studied at the gene expression level. In both the roots and leaves, the highest expressions of NR and GS were detected in the T1 ($\text{NO}_3^-/\text{NH}_4^+ = 16/0$) treatment group (Fig. 6A,B), indicating that NO_3^- can induce the expression of both NR and GS. *NADH-GOGAT* plays a major role in roots, and its expression gradually decreased with increasing NH_4^+ concentration (Fig. 6C). *Fd-GOGAT* functions mainly in leaves, and its expression was greatest in the T4 ($\text{NO}_3^-/\text{NH}_4^+ = 4/12$) treatment group and lowest in the T3 ($\text{NO}_3^-/\text{NH}_4^+ = 8/8$) treatment group (Fig. 6C).

The expressions of several *NRTs* and *AMTs*, including *NRT1*, *NRT1.1*, *NRT1.7*, *NRT2.7*, *AMT1.1*, and *AMT1.2* were also analyzed (Fig. 7). In roots, the expressions of *NRT1*, *NRT1.1*, and *NRT1.7* were the highest in the T1 ($\text{NO}_3^-/\text{NH}_4^+ = 16/0$) treatment group (Fig. 7A-C). In contrast, the expression of *NRT2.7* showed the opposite trend, as its expression was the lowest in the T1 ($\text{NO}_3^-/\text{NH}_4^+ = 16/0$) treatment group and the highest level occurring in the T3 ($\text{NO}_3^-/\text{NH}_4^+ = 8/8$) treatment group (Fig. 7D). With increasing NH_4^+ concentration, the *AMT1.1* expression level first decreased but then increased (Fig. 7E). Furthermore, the expression level of *AMT1.2* was much greater in T1 ($\text{NO}_3^-/\text{NH}_4^+ = 16/0$) than in the other treatment groups (Fig. 7F).

In the leaves, the expression levels of *NRT1*, *NRT1.1*, and *NRT1.7* were the highest in the T3, T2, and T2 treatment groups, respectively (Fig. 7G-I). The lowest level of *NRT2.7* was detected in the T3 treatment group (Fig. 7J). *AMT1.1* and *AMT1.2* expression increased with increasing NH_4^+ concentration, peaking in the T3 and T4 treatment groups (Fig. 7K,L).

Discussion

Biomass is the most intuitive index of plant growth. Nitrogen and the ratio of its different forms (NO_3^- and NH_4^+) directly affect plant life activities and are ultimately reflected in the morphology and biomass of the plant (Sun *et al.*, 2020; Wang *et al.*, 2022). Mini Chinese cabbage seedlings fertilized with NO_3^- nitrogen alone presented longer primary roots, but a lower shoot and root biomass than did plants fertilized with both NH_4^+ and NO_3^- (Hu *et al.*, 2015). The photosynthetic pigment content, net photosynthetic rate, and stomatal conductance

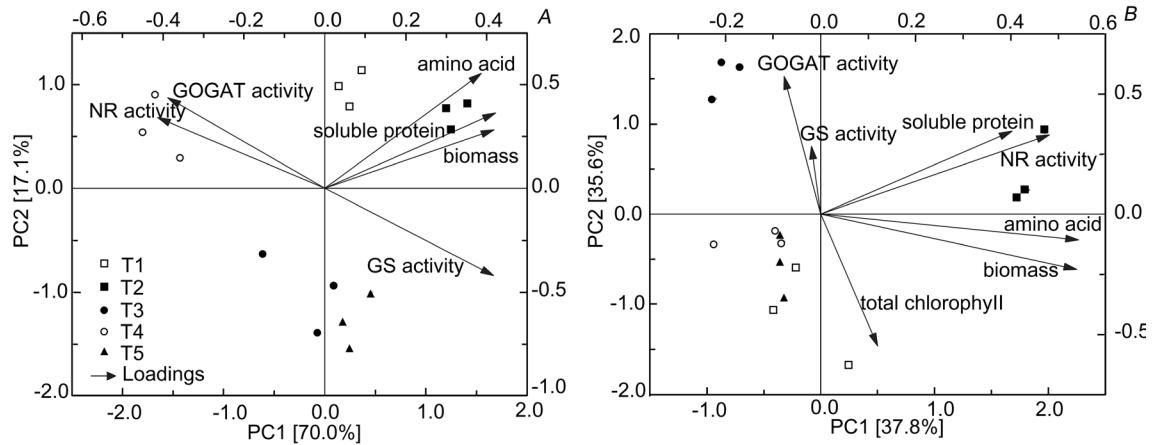


Fig. 5. Principal component analysis (PCA) of the total biomass, soluble protein content, amino acid content, NR activity, GOGAT activity, and GS activity in roots (A) and total biomass, soluble protein content, amino acid content, NR activity, GOGAT activity, GS activity, and total chlorophyll content in leaves (B).

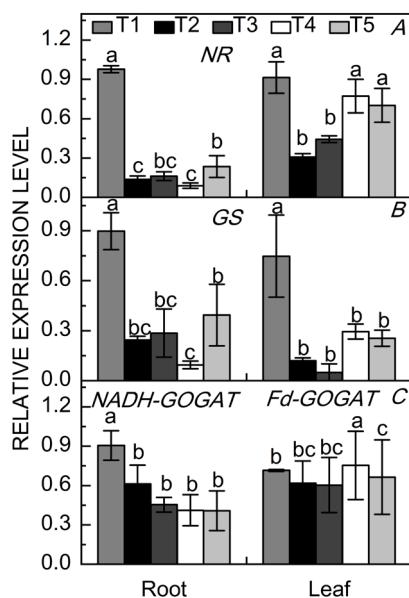


Fig. 6. Effects of different ratios of $\text{NO}_3^-/\text{NH}_4^+$ [16/0 (T1), 12/4 (T2), 8/8 (T3), 4/12 (T4), and 0/16 (T5)] on the expressions of NR (A), GS (B), and GOGAT (C). NADH-GOGAT and *Fd*-GOGAT are different forms of GOGAT found in the roots and leaves, respectively. Means \pm SEs of three biological replicates. Different letters indicate significant differences according to Duncan's test, $P < 0.05$.

also decrease after fertilization with NO_3^- alone (Hu et al., 2015). Furthermore, the application of NO_3^- only to Chinese cabbage resulted in the lowest soluble protein and flavonoid content but the highest nitrate content (Zhu et al., 2018). These studies indicated that the combined application of NH_4^+ and NO_3^- was more beneficial to plant growth than the addition of NH_4^+ or NO_3^- alone.

In this study, when the total nitrogen application was constant, the $\text{NO}_3^-/\text{NH}_4^+$ ratio had different effects on the roots, stems and leaves of Chinese toon seedlings (Table 2 Suppl.). With increasing NH_4^+ content in the

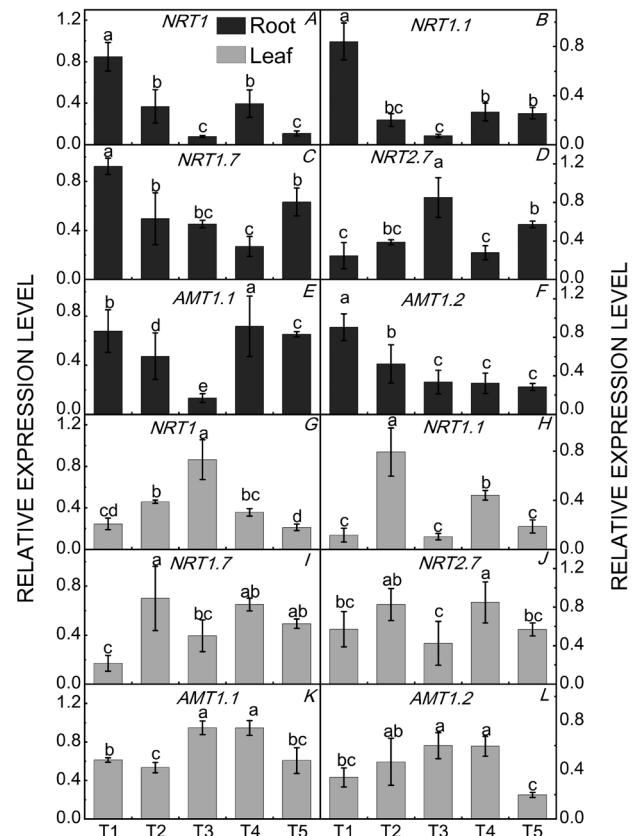


Fig. 7. Effects of different ratios of $\text{NO}_3^-/\text{NH}_4^+$ [16/0 (T1), 12/4 (T2), 8/8 (T3), 4/12 (T4), and 0/16 (T5)] on the expressions of key genes related to nitrogen transport in roots (A-F) and leaves (G-L). Means \pm SEs of three biological replicates. Different letters indicate significant differences according to Duncan's test, $P < 0.05$.

nutrient mixture, the biomass of the Chinese toon seedlings tended firstly to increase but then to decrease. In general, the growth phenotype and biomass were not optimal upon fertilization with NH_4^+ alone (T5) or NO_3^- alone (T1).

Consistent with previous work, our research has provided further evidence that an appropriate $\text{NO}_3^-/\text{NH}_4^+$ ratio can improve plant growth (Zhu *et al.*, 2018, 2021).

PCA was used to visualize how the $\text{NO}_3^-/\text{NH}_4^+$ ratio affected the Chinese toon seedlings (Fig. 5). The samples from the different treatment groups clustered in different areas, indicating that Chinese toon seedling growth was affected by differences in the $\text{NO}_3^-/\text{NH}_4^+$ ratio. For the roots, the T3 samples were located mainly in the third quadrant, indicating that this treatment was not suitable for the growth of Chinese toon roots. For both the roots and leaves, biomass, soluble protein content, and amino acid content, contributed significantly to PC1 (Fig. 5). Moreover, the growth parameters (Fig. 1, Table 2 Suppl.) and indexes determined by a series of physiological measurements (Figs. 2, 3, 4) were better in the T2 group than other treatment group, and these results were supported by PCA, indicating that T2 was the optimal treatment for the growth of Chinese toon seedlings.

The main pathway of nitrogen assimilation in plants is generally believed to involve the formation of NO_2^- from NO_3^- through NR and the subsequent formation of NH_4^+ through NiR (Meyer and Stitt, 2001). NH_4^+ is incorporated into amino acids and then into various proteins, mainly through the GS/GOGAT circular reaction, in which GS is a key enzyme in NH_4^+ assimilation (Unno *et al.*, 2006). In higher plants, NR is a nitrogen assimilation rate-limiting enzyme and a substrate-inducing enzyme exists in the cytoplasm of the roots and leaves of higher plants (Meyer and Stitt, 2001). NR activity is regulated and induced by NO_3^- in cells, wherein NO_3^- reduction occurs mainly in the cytoplasm (Wang *et al.*, 2004; Meyer and Stitt, 2001; Masclaux-Daubresse *et al.*, 2010). The trends in NR and GOGAT activity in the roots were consistent but opposite to the trends in GS activity (Fig. 4). On the basis of these results, we hypothesize that when the content of NO_3^- is not lower than that of NH_4^+ (*i.e.*, T1, T2, and T3), NR can maintain the NO_3^- reduction rate, and GOGAT can assimilate the NH_4^+ that is reduced by NO_3^- , and directly absorbed by the roots; moreover, the concentration of NH_4^+ is maintained within an appropriate range. When the proportion of NH_4^+ was high, the activities of NR and GOGAT increased, and the reduction in NO_2^- and glutamate production were faster. However, the contents of soluble protein and free amino acids decreased, indicating that nitrogen assimilation efficiency was low at this time, which may be related to the low GS activity and the limitations of the GS/GOGAT cycle.

The activity of GS in the leaves, was greater than that in the roots (Fig. 4C), indicating that NH_4^+ assimilation was more active in Chinese toon leaves. When the NO_3^- proportion was not greater than the NH_4^+ proportion (*i.e.*, T3, T4, and T5), GS activity was greater, which may be related to the increased NR activity that promoted NO_3^- conversion and NH_4^+ formation. When NH_4^+ was the only nitrogen source (T5, $\text{NO}_3^-/\text{NH}_4^+=0/16$), the activity of GS peaked, indicating that GS converts NH_4^+ to glutamine to protect seedlings from the toxic effects of excessive NH_4^+ . In addition, in the process of nitrogen assimilation, NR and GOGAT require the

reducing power of NADH or Fd, whereas GS requires energy (Masclaux-Daubresse *et al.*, 2010). At the expense of energy, plants must reduce nitrate before nitrogen can be used to synthesize amino acids (Andrews *et al.*, 2013; Kuppe *et al.*, 2024). As NH_4^+ is energetically cheaper than NO_3^- , the high activity of GS under T5 treatment ($\text{NO}_3^-/\text{NH}_4^+=0/16$) may be related to the fact that less energy is consumed by assimilating NH_4^+ .

Flavin adenine dinucleotide, heme, and molybdenum cofactors are linked to the NR monomer when functional and complete, NR is a homodimer (Meyer and Stitt, 2001). Moreover, GS is not a protein encoded by a single gene and has a polymer structure (Unno *et al.*, 2006). In plants, NADH-GOGAT and Fd-GOGAT are located in both nonphotosynthetic plastids and chloroplasts. Fd-GOGAT is encoded by *GLU1* and *GLU2* in *Arabidopsis*, and NADH-GOGAT is encoded by *GLT* (Suzuki and Knaff, 2005). Cytosolic GS and NADH-GOGAT may be involved in the primary assimilation of ammonia in roots (Tabuchi *et al.*, 2007; Fortunato *et al.*, 2023), but chloroplastic GS and Fd-GOGAT participate in ammonia assimilation in leaves, a step that is highly important under light conditions (Tabuchi *et al.*, 2007; Ferreira *et al.*, 2019; Fortunato *et al.*, 2023). The changes in the expression of genes encoding NR, GS, and GOGAT were not completely consistent with the changes in enzyme activity, suggesting that nitrogen assimilation and utilization in *T. sinensis* are a complicated life processes rather than controlled by the expression of a single gene; furthermore, the mechanism of nitrogen assimilation and utilization at the protein level may be even more complex. Thus, the underlying mechanism needs to be further explored.

NO_3^- has been suggested to act as a regulatory factor of gene expression to directly regulate plant nitrogen metabolism at the gene transcription level (Wang *et al.*, 2004), which was confirmed in the present study. When only NO_3^- was applied (T1), the expressions of *NR*, *GS*, *Fd-GOGAT*, and *NADH-GOGAT* were significantly greater than those in the other treatments (Fig. 6C). Furthermore, *NRT* and *AMT* expressions were also notably affected by the $\text{NO}_3^-/\text{NH}_4^+$ ratio. The difference in trends of the expression of *NRT1s* (*NRT1*, *NRT1.1*, and *NRT1.7*) and *NRT2.7* may be related to the two nitrogen transport systems. Under relatively high NO_3^- conditions, the LAT system, which includes *NRT1*, *NRT1.1* (a dual-affinity NO_3^- transporter), and *NRT1.7*, plays vital roles in the uptake of nitrogen and its transport from the roots to the shoots. The upregulation of *NRT2.7* with decreasing NO_3^- concentration indicated that the HAT system functioned to ensure nutrient absorption and utilization. In terms of NH_4^+ transport, the expression of *AMT1.2* was inhibited by NH_4^+ , while the expression of *AMT1.1* in the roots reached its highest level under T4 ($\text{NO}_3^-/\text{NH}_4^+=4/12$). The interaction between NH_4^+ and NO_3^- and the control mechanism regulated by *AMT1.2* have been previously reported in *Brassica campestris* L. (Zhu *et al.*, 2020). However, the functions of *AMT* vary in different plant species (Loqué and von Wirén 2004; Zhu *et al.*, 2020). The expression patterns of *AMT1.1* and *AMT1.2* in response to different $\text{NO}_3^-/\text{NH}_4^+$ ratios may reflect the different

nitrogen transport strategies in *T. sinensis* seedlings. The expression patterns of *AMT1.1* and *AMT1.2* in the leaves were not similar to those in roots; however, more data is needed to explain these mechanisms.

Conclusions

In addition to the total nitrogen content, the $\text{NO}_3^-/\text{NH}_4^+$ ratio also affects the growth of Chinese toon seedlings. The soluble protein content, free amino acid content, and activities of key metabolic enzymes involved in nitrogen assimilation were affected by the $\text{NO}_3^-/\text{NH}_4^+$ ratio. A total nitrogen content of 0.16 mM with $\text{NO}_3^-/\text{NH}_4^+ = 12/4$ was optimal for *T. sinensis* seedling growth. NO_3^- can directly regulate nitrogen assimilation and utilization in *T. sinensis* seedlings at the transcription level, and the expression levels of *NR*, *GS*, and *NADH-GOGAT* were greater in the T1 treatment group than in the other groups. Under high NO_3^- application, the LAT system, which includes *NRT1*, *NRT1.1*, and *NRT1.7*, plays a leading role in nitrogen transport. As the concentration of NO_3^- decreased, the expression of *NRT2.7* increased, and the HAT system functioned to ensure nutrient absorption and utilization.

References

Andrews, M., Raven, J.A. & Lea, P.J. (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. *Annals of Applied Biology*, 163, 174-199.

Bernard, S.M. & Habash, D.Z. (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. *New Phytologist*, 182, 608-620.

Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 72, 248-254.

Chen, H., Zhang, Q., Cai, H., Zhou, W. & Xu, F. (2018) H_2O_2 mediates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. *Plant, Cell and Environment*, 41, 767-781.

Cruz, C., Domínguez-Valdivia, M.D., Aparicio-Tejo, P.M. et al. (2011) Intra-specific variation in pea responses to ammonium nutrition leads to different degrees of tolerance. *Environmental and Experimental Botany*, 70, 233-243.

Ferreira, S., Moreira, E., Amorim, I., Santos, C. & Melo, P. (2019) *Arabidopsis thaliana* mutants devoid of chloroplast glutamine synthetase (GS2) have non-lethal phenotype under photorespiratory conditions. *Plant Physiology and Biochemistry*, 144, 365-374.

Fortunato, S., Nigro, D., Lasorella, C., Marcotulli, I., Gadaleta, A. & de Pinto, M.C. (2023) The role of glutamine synthetase (GS) and glutamate synthase (GOGAT) in the improvement of nitrogen use efficiency in cereals. *Biomolecules*, 13, 1771.

Foyer, C.H., Noctor, G. & Hodges, M. (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. *Journal of Experimental Botany*, 62, 1467-1482.

Gao, Z., Wang, Y., Chen, G. et al. (2019) The *indica* nitrate reductase gene *OsNR2* allele enhances rice yield potential and nitrogen use efficiency. *Nature Communications*, 10, 5207.

Guo, S., Chen, G., Zhou, Y. & Shen, Q. (2007) Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (*Oryza sativa* L.). *Plant and Soil*, 296, 115-124.

Hachiya, T. & Sakakibara, H. (2017) Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. *Journal of Experimental Botany*, 68, 2501-2512.

Hu, L., Yu, J., Liao, W. et al. (2015) Moderate ammonium:nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. *Scientia Horticulturae*, 186, 143-153.

Huang, N.-C., Liu, K.-H., Lo, H.-J. & Tsay, Y.-F. (1999) Cloning and functional characterization of an *Arabidopsis* nitrate transporter gene that encodes a constitutive component of low-affinity uptake. *The Plant Cell*, 11, 1381-1392.

Krapp, A., David, L.C., Chardin, C. et al. (2014) Nitrate transport and signalling in *Arabidopsis*. *Journal of Experimental Botany*, 65, 789-798.

Kuppe, C.W., Johannes, A. & Postma, J.A. (2024) Benefits and limits of biological nitrification inhibitors for plant nitrogen uptake and the environment. *Scientific Reports*, 14, 15027.

Lin, Y.M., Tay, J.H., Liu, Y. & Hung, Y.T. (2009) Biological nitrification and denitrification processes. In: Wang, L.K., Pereira, N.C. & Hung, Y.T. (Eds.) *Biological Treatment Processes*. Handbook of Environmental Engineering. Vol. 8. Totowa: Humana Press, pp. 539-588.

Liu, W., Li, Y., Tomasetto, F. et al. (2022) Non-destructive measurements of *Toona sinensis* chlorophyll and nitrogen content under drought stress using near infrared spectroscopy. *Frontiers in Plant Science*, 12, 809828.

Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta\text{CT}}$ method. *Methods*, 25, 402-408.

Loqué, D. & von Wirén, N. (2004) Regulatory levels for the transport of ammonium in plant roots. *Journal of Experimental Botany*, 55, 1293-1305.

Maathuis, F.J.M. (2009) Physiological functions of mineral macronutrients. *Current Opinion in Plant Biology*, 12, 250-258.

Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorganat, J., Chardon, F., Gaufichon, L. & Suzuki, A. (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. *Annals of Botany*, 105, 1141-1157.

Meyer, C. & Stitt, M. (2001) Nitrate reduction and signalling. In: Lea, P.J., Morot-Gaudry, J.-F. (Eds.) *Plant Nitrogen*. Berlin-Heidelberg: Springer, pp. 37-59.

Miflin, B.J. & Habash, D.Z. (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. *Journal of Experimental Botany*, 53, 979-987.

Nacry, P., Bouguyon, E. & Gojon, A. (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. *Plant and Soil*, 370, 1-29.

Oldroyd, G.E.D. & Leyser, O. (2020) A plant's diet, surviving in a variable nutrient environment. *Science*, 368, eaba0196.

Pratiwi, E.P.A., Hillary, A.K., Fukuda, T. & Shinogi, Y. (2016) The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. *Geoderma*, 277, 61-68.

Praxedes, S.C., DaMatta, F.M., Loureiro, M.E., Ferrão, M.A.G. & Cordeiro, A.T. (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (*Coffea canephora* Pierre var. *kouillou*) leaves.

Environmental and Experimental Botany, 56, 263-273.

Sun, X., Chen, F., Yuan, L. & Mi, G. (2020) The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. *Planta*, 251, 84.

Suzuki, A. & Knaff, D.B. (2005) Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. *Photosynthesis Research*, 83, 191-217.

Tabatabaei, S.J., Yusefi, M. & Hajiloo, J. (2008) Effects of shading and $\text{NO}_3:\text{NH}_4$ ratio on the yield, quality and N metabolism in strawberry. *Scientia Horticulturae*, 116, 264-272.

Tabuchi, M., Abiko, T. & Yamaya, T. (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (*Oryza sativa* L.). *Journal of Experimental Botany*, 58, 2319-2327.

Unno, H., Uchida, T., Sugawara, H. et al. (2006) Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity. *Journal of Biological Chemistry*, 281, 29287-29296.

Vanoni, M.A., Dossena, L., van den Heuvel, R.H.H. & Curti, B. (2005) Structure-function studies on the complex iron-sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation. *Photosynthesis Research*, 83, 219-238.

Wang, R., Tischner, R., Gutiérrez, R.A. et al. (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of *Arabidopsis*. *Plant Physiology*, 136, 2512-2522.

Wang, Y., Zhang, X., Liu, H., Sun, G., Song, S. & Chen, R. (2022) High $\text{NH}_4^+/\text{NO}_3^-$ ratio inhibits the growth and nitrogen uptake of Chinese kale at the late growth stage by ammonia toxicity. *Horticulturae* 8, 8.

Wang, Y.-Y., Cheng, Y.-H., Chen, K.-E. & Tsay, Y.-F. (2018) Nitrate transport, signaling, and use efficiency. *Annual Review of Plant Biology*, 69, 85-122.

Williams, L.E. & Miller, A.J. (2001) Transporters responsible for the uptake and partitioning of nitrogenous solutes. *Annual Review of Plant Biology*, 52, 659-688.

Witham, F.H., Blaydes, D.F. & Devlin, R.M. (1971) Experiments in Plant Physiology. New York: Van Nostrand Reinhold Co., pp. 167-200.

Xing, J., Cao, X., Zhang, M., Wei, X., Zhang, J. & Wan, X. (2023) Plant nitrogen availability and crosstalk with phytohormones signalling and their biotechnology breeding application in crops. *Plant Biotechnology Journal*, 21, 1320-1342.

Xuan, W., Beeckman, T. & Xu, G. (2017) Plant nitrogen nutrition: sensing and signaling. *Current Opinion in Plant Biology*, 39, 57-65.

Yan, Y., Zhang, Z., Sun, H. et al. (2023) Nitrate confers rice adaptation to high ammonium by suppressing its uptake but promoting its assimilation. *Molecular Plant*, 16, 1871-1874.

Yuan, L., Loqué, D., Kojima, S. et al. (2007) The organization of high-affinity ammonium uptake in *Arabidopsis* roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. *The Plant Cell*, 19, 2636-2652.

Zhang, J., Lv, J., Dawuda, M.M. et al. (2019) Appropriate ammonium-nitrate ratio improves nutrient accumulation and fruit quality in pepper (*Capsicum annuum* L.). *Agronomy*, 9, 683.

Zhang, Y.-Y., Tian, J.-P., Cui, J., Hong, Y.-H. & Luan, Y.-S. (2021) Effects of different $\text{NH}_4^+/\text{NO}_3^-$ ratios on the photosynthetic and physiology responses of blueberry (*Vaccinium* spp.) seedlings growth. *Journal of Plant Nutrition*, 44, 854-864.

Zhao, H., Ge, M.M., Zhang, F.Z. et al. (2024) Integrated morphological, physiological and transcriptomic analyses reveal the responses of *Toona sinensis* seedlings to low-nitrogen stress. *Genomics*, 116, 110899.

Zhu, Y., Huang, X., Hao, Y. et al. (2020) Ammonium transporter (*BcAMT1.2*) mediates the interaction of ammonium and nitrate in *Brassica campestris*. *Frontiers in Plant Science*, 10, 1776.

Zhu, Y., Li, G., Liu, H., Sun, G., Chen, R. & Song, S. (2018) Effects of partial replacement of nitrate with different nitrogen forms on the yield, quality and nitrate content of Chinese kale. *Communications in Soil Science and Plant Analysis*, 49, 1384-1393.

Zhu, Y., Lian, J., Zeng, H. et al. (2011) Involvement of plasma membrane H^+-ATPase in adaption of rice to ammonium nutrient. *Rice Science*, 18, 335-342.

Zhu, Y., Qi, B., Hao, Y. et al. (2021) Appropriate $\text{NH}_4^+/\text{NO}_3^-$ ratio triggers plant growth and nutrient uptake of flowering Chinese cabbage by optimizing the pH value of nutrient solution. *Frontiers in Plant Science*, 12, 656144.